什么是Lifecycle?
Lifecycle 组件指的是 android.arch.lifecycle 包下提供的各种类与接口,可以让开发者构建能感知其他组件(主要指Activity 、Fragment)生命周期(lifecycle-aware)的类。
为什么要引进Lifecycle?
前面说了,Lifecycle能够让开发者构建能感知其他组件(主要指Activity 、Fragment)生命周期(lifecycle-aware)的类。划重点,**让开发者构建能感知其他组件(主要指Activity 、Fragment)生命周期(lifecycle-aware)的类。**在android开发的过程中,我们常常需要让一些操作能够感知Activity/Fragment的生命周期,从而实现在活动状态下允许操作,而在销毁状态下需要自动禁止操作,释放资源,防止内存泄露。例如大名鼎鼎的图片加载框架Glide在Acticiy/Fragment处于前台的时候加载图片,而在不可见的状态下停止图片的加载,又例如我们希望RxJava的Disposable能够在Activity/Fragment销毁是自动dispose。Lifecycle的出现,让开发者们能够轻易地实现上述的功能。
一个用Lifecycle改造的MVP例子
比如我们现在需要实现这样一个功能:监听某个 Activity 生命周期的变化,在生命周期改变的时候打印日志。
- 一般做法构造回调的方式
先定义基础IPresent接口:
代码语言:txt复制public interface IPresent {
void onCreate();
void onStart();
void onResume();
void onPause();
void onStop();
void onDestory();
}
然后在自定义的Present中继承IPresent接口:
代码语言:txt复制public class MyPresent implements IPresent {
private String TAG = "tag";
@Override
public void onCreate() {
LogUtil.i(TAG, "onCreate");
}
@Override
public void onStart() {
LogUtil.i(TAG, "onStart");
}
@Override
public void onResume() {
LogUtil.i(TAG, "onResume");
}
@Override
public void onPause() {
LogUtil.i(TAG, "onPause");
}
@Override
public void onStop() {
LogUtil.i(TAG, "onStop");
}
@Override
public void onDestory() {
LogUtil.i(TAG, "onDestory");
}
最后在Activity依次调用回调方法分发事件:
代码语言:txt复制public class MyActivity extends AppCompatActivity {
protected MyPresent myPresent;
@Override
public void onCreate(@Nullable Bundle savedInstanceState, @Nullable PersistableBundle persistentState) {
super.onCreate(savedInstanceState, persistentState);
myPresent = new MyPresent();
myPresent.onCreate();
}
@Override
protected void onStart() {
super.onStart();
myPresent.onStart();
}
@Override
protected void onResume() {
super.onResume();
myPresent.onResume();
}
@Override
protected void onPause() {
super.onPause();
myPresent.onPause();
}
@Override
protected void onStop() {
super.onStop();
myPresent.onStop();
}
@Override
protected void onDestroy() {
super.onDestroy();
myPresent.onDestory();
}
}
通过这么一个简单的例子,我们可以看出,实现流程虽然很简单,但是代码实现繁琐,不够灵活,且代码侵入性太强。该例子只是展示了Present监听Activity生命周期,如果说还有类1,类2,类3......想要监听Activity的生命周期,那么就要在Activity的回调中添加对类1,类2,类3.....的回调。这就引起了一个思考,我们是否能够实现Activity在生命周期发生变化时主动通知需求方的功能呢?可以的,答案就是Lifecycle。
- Lifecycle实现Present
先实现MyPresent,同时在每一个方法实现上增加@OnLifecycleEvent(Lifecycle.Event.XXXX)注解,OnLifecycleEvent对应了Activity的生命周期方法:
代码语言:txt复制public class MyPresent implements IPresent, LifecycleObserver {
@OnLifecycleEvent(Lifecycle.Event.ON_CREATE)
@Override
public void onCreate() {
LogUtil.i(TAG, "onCreate");
}
@OnLifecycleEvent(Lifecycle.Event.ON_START)
@Override
public void onStart() {
LogUtil.i(TAG, "onStart");
}
@OnLifecycleEvent(Lifecycle.Event.ON_RESUME)
@Override
public void onResume() {
LogUtil.i(TAG, "onResume");
}
@OnLifecycleEvent(Lifecycle.Event.ON_PAUSE)
@Override
public void onPause() {
LogUtil.i(TAG, "onPause");
}
@OnLifecycleEvent(Lifecycle.Event.ON_STOP)
@Override
public void onStop() {
LogUtil.i(TAG, "onStop");
}
@OnLifecycleEvent(Lifecycle.Event.ON_DESTROY)
@Override
public void onDestory() {
LogUtil.i(TAG, "onDestory");
}
}
然后在需要监听的 Activity 中注册:
代码语言:txt复制public class MyActivity extends AppCompatActivity {
protected MyPresent myPresent;
@Override
public void onCreate(@Nullable Bundle savedInstanceState, @Nullable PersistableBundle persistentState) {
super.onCreate(savedInstanceState, persistentState);
getLifecycle().addObserver(new MyPresent()); //添加监听对象
}
}
运行如下:
代码语言:txt复制com.cimu.lifecycle I/MyPresent : onCreate()
com.cimu.lifecycle I/MyPresent : onStart()
com.cimu.lifecycle I/MyPresent : onResume()
com.cimu.lifecycle I/MyPresent : onPause()
com.cimu.lifecycle I/MyPresent : onStop()
com.cimu.lifecycle I/MyPresent : onDestroy()
是不是很简单,我们希望MyPresent感知监听Activity的生命周期,只需要在Activity中调用一句getLifecycle().addObserver(new MyPresent())就可以了。Lifecycle是怎样实现感知生命周期进而通知观察者的功能的呢?
Lifecycle源码分析
首先需要知道三个关键的东西:
- LifecycleOwner:生命周期的事件分发者,在 Activity/Fragment 他们的生命周期发生变化的时发出相应的 Event 给LifecycleRegistry。
- LifecycleObserver:生命周期的观察者,通过注解将处理函数与希望监听的Event绑定,当相应的Event发生时,LifecycleRegistry会通知相应的函数进行处理。
- LifecycleRegistry:控制中心。它负责控制state的转换、接受分发event事件。
LifeCycle的源码分析,我们分为两个步骤来分析:
- 注册/注销监听流程
- **生命周期分发流程**
注册/注销监听流程源码分析
从上面的MVP例子,我们已经知道,注册只需要调用getLifecycle().addObserver(observer)即可,那么addObserver就可以作为源码分析的入口。
通过追踪,我们发现getLifecycle返回的是SupportActivity中的mLifecycleRegistry,类型为LifecycleRegistry:
代码语言:txt复制public class SupportActivity extends Activity implements LifecycleOwner {
......
private FastSafeIterableMap<LifecycleObserver, ObserverWithState> mObserverMap
= new FastSafeIterableMap<>();
private LifecycleRegistry mLifecycleRegistry = new LifecycleRegistry(this);
......
@Override
public Lifecycle getLifecycle() {
return mLifecycleRegistry;
}
......
}
那么addObserver实际上是调用了LifecycleRegistry的addObserver方法,我们来看一下这个方法:
代码语言:txt复制@Override
public void addObserver(@NonNull LifecycleObserver observer) {
State initialState = mState == DESTROYED ? DESTROYED : INITIALIZED;
//将传进来的监听者observer封装成一个ObserverWithState
ObserverWithState statefulObserver = new ObserverWithState(observer, initialState);
//将封装好的ObserverWithState存入集合中
ObserverWithState previous = mObserverMap.putIfAbsent(observer, statefulObserver);
if (previous != null) {
return;
}
LifecycleOwner lifecycleOwner = mLifecycleOwner.get();
if (lifecycleOwner == null) {
// it is null we should be destroyed. Fallback quickly
return;
}
boolean isReentrance = mAddingObserverCounter != 0 || mHandlingEvent;
State targetState = calculateTargetState(observer);
mAddingObserverCounter ;
while ((statefulObserver.mState.compareTo(targetState) < 0
&& mObserverMap.contains(observer))) {
pushParentState(statefulObserver.mState);
statefulObserver.dispatchEvent(lifecycleOwner, upEvent(statefulObserver.mState));
popParentState();
// 我们 dispatch 了一个事件给观察者,在回调观察者代码的时候,观察者可能会
// 修改我们的状态
// mState / subling may have been changed recalculate
targetState = calculateTargetState(observer);
}
if (!isReentrance) {
// we do sync only on the top level.
sync();
}
mAddingObserverCounter--;
}
关于注册流程,上面我们重点关注封装了observer的ObserverWithState:
代码语言:txt复制static class ObserverWithState {
State mState;
GenericLifecycleObserver mLifecycleObserver;
ObserverWithState(LifecycleObserver observer, State initialState) {
//getCallback()通过不同的类型的observer返回不同GenericLifecycleObserver实现类
mLifecycleObserver = Lifecycling.getCallback(observer);
mState = initialState;
}
//生命周期event的分发,最终会调用到这个方法,这个方法中在调用了GenericLifecycleObserver的
//的onStateChanged方法
void dispatchEvent(LifecycleOwner owner, Event event) {
State newState = getStateAfter(event);
mState = min(mState, newState);
mLifecycleObserver.onStateChanged(owner, event);
mState = newState;
}
}
public interface GenericLifecycleObserver extends LifecycleObserver {
void onStateChanged(LifecycleOwner source, Lifecycle.Event event);
}
ObserverWithState的构造方法调用了Lifecycling.getCallback()将传入的observer进行解析,生成了对接口类GenericLifecycleObserver的具体实现返回,并且在具体实现类中重写了onStateChanged方法,在onStateChanged实现了生命周期的分发。当Activity/Fragment的生命周期发生变化时,会遍历LifecycleRegistry中的mObserverMap集合,取出其中的ObserverWithState节点,调用它的onStateChanged方法,而在ObserverWithState的onStateChanged的方法中又调用了实现了具体生命周期分发的GenericLifecycleObserver.onStateChanged方法。
在分析Lifecycling.getCallback()方法之前,我们先来看一下Lifecycle使用的三种基本使用方式:
- 第一种使用方式。使用@onLifecycleEvent注解。注解处理器会将该注解解析并动态生成GeneratedAdapter代码,这个GeneratedAdapter会把对应的 Lifecycle.Event 封装为方法调用。最终通过GenericLifecycleObserver的onStateChanged方法调用生成的GeneratedAdapter的callMechods方法进行事件分发(结合下面例子理解)。
public class MyLifeCycleObserver implements LifeCycleObserver {
@onLifecycleEvent(LifeCycle.Event.ON_CREATE)
public onCreate(LifeCycleOwner owner) {
//doSomething
}
@onLifecycleEvent(LifeCycle.Event.ON_DESTROY)
public onDestroy(LifeCycleOwner owner) {
//doSomething
}
}
public class MainActivity extends AppCompatActivity {
@override
public void onCreate(savedInstanceState: Bundle?) {
super.onCreate(savedInstanceState)
setContentView(R.layout.activity_main)
getLifecycle().addObserver(new MyLifeCycleObserver());
}
}
上述的例子中的MyLifeCycleObserver将会在编译时,生成GeneratedAdapter代码如下:
代码语言:txt复制public class MyLifeCycleObserver_LifecycleAdapter implements GeneratedAdapter {
final MyLifeCycleObserver mReceiver;
MyLifeCycleObserver_LifecycleAdapter(MyLifeCycleObserver receiver) {
//mReceiver就是我们开发者传入的MyLifeCycleObserver
this.mReceiver = receiver;
}
//callMechod方法会被GenericLifecycleObserver的onStateChanged方法调用,用以分发生命周期
@Override
public void callMethods(LifecycleOwner owner, Lifecycle.Event event, boolean onAny, MethodCallsLogger logger) {
boolean hasLogger = logger != null;
if (onAny) {
return;
}
//如果生命周期事件是ON_CREATE,那么调用MyLifeCycleObserver的onCreate方法
if (event == Lifecycle.Event.ON_CREATE) {
if (!hasLogger || logger.approveCall("onCreate", 2)) {
mReceiver.onCreate(owner);
}
return;
}
//如果生命周期事件是ON_DESTROY,那么调用MyLifeCycleObserver的onDestroy方法
if (event == Lifecycle.Event.ON_DESTROY) {
if (!hasLogger || logger.approveCall("onDestroy", 2)) {
mReceiver.onDestroy(owner);
}
return;
}
}
}
- 第二种使用方式。直接继承GenericLifecycleObserver,并实现onStateChange方法
public class MyLifeCycleObserver extends GenericLifeCycleObserver {
@override
void onStateChanged(LifecycleOwner source, Lifecycle.Event event) {
if(event == LifeCycleEvent.Event.ON_CREATE) {
//dosomething
} else if(event == LifeCycleEvent.Event.ON_DESTROY) {
//doSomething
}
}
}
public class MainActivity extends AppCompatActivity {
@override
public void onCreate(savedInstanceState: Bundle?) {
super.onCreate(savedInstanceState)
setContentView(R.layout.activity_main)
getLifecycle().addObserver(new MyLifeCycleObserver());
}
}
- 第三种使用方式。继承DefaultLifecycleObserver接口(DefaultLifecycleObserver又继承自FullLifecycleObserver接口),并实现**FullLifecycleObserver接口的**onCreate、onStart、onResume、onPause、onStop、onDestroy等对应各自生命周期的方法
class MyLifycycleObserver implements DefaultLifecycleObserver {
@Override
public void onCreate(@NonNull LifecycleOwner owner) {
//doSomething
}
......
@Override
public void onDestroy(@NonNull LifecycleOwner owner) {
//doSomething
}
}
public class MainActivity extends AppCompatActivity {
@override
public void onCreate(savedInstanceState: Bundle?) {
super.onCreate(savedInstanceState)
setContentView(R.layout.activity_main)
getLifecycle().addObserver(new MyLifeCycleObserver());
}
}
上面我们学习了使用Lifecycle的三种基本方法,下面我们简单看看Lifecycling.getCallback()方法是如何生成GenericLifecycleObserver具体实现类返回的:
代码语言:txt复制//首先,我们先熟悉一下resolveObserverCallbackType这个方法,这个方法在Lifecycling.getCallback()
//中被调用,getCallback中会根据它的返回值决定返回什么类型的GenericLifecycleObserver实现类
private static int resolveObserverCallbackType(Class<?> klass) {
if (klass.getCanonicalName() == null) {
return REFLECTIVE_CALLBACK;
}
//当使用第一种方式注解时,会自动生成代码,生成的adapter继承了GeneratedAdapter,
//所以返回值是GENERATED_CALLBACK
Constructor<? extends GeneratedAdapter> constructor = generatedConstructor(klass);
if (constructor != null) {
sClassToAdapters.put(klass, Collections
.<Constructor<? extends GeneratedAdapter>>singletonList(constructor));
return GENERATED_CALLBACK;
}
//hasLifecycleMethods方法是判断klass中是否包含了onLifecycleEvent.class注解
//如果包含,返回REFLECTIVE_CALLBACK
boolean hasLifecycleMethods = ClassesInfoCache.sInstance.hasLifecycleMethods(klass);
if (hasLifecycleMethods) {
return REFLECTIVE_CALLBACK;
}
//递归调用resolveObserverCallbackType方法,遍历klass的父类
Class<?> superclass = klass.getSuperclass();
List<Constructor<? extends GeneratedAdapter>> adapterConstructors = null;
if (isLifecycleParent(superclass)) {
if (getObserverConstructorType(superclass) == REFLECTIVE_CALLBACK) {
return REFLECTIVE_CALLBACK;
}
adapterConstructors = new ArrayList<>(sClassToAdapters.get(superclass));
}
//遍历并且递归kclass的接口
for (Class<?> intrface : klass.getInterfaces()) {
if (!isLifecycleParent(intrface)) {
continue;
}
if (getObserverConstructorType(intrface) == REFLECTIVE_CALLBACK) {
return REFLECTIVE_CALLBACK;
}
if (adapterConstructors == null) {
adapterConstructors = new ArrayList<>();
}
adapterConstructors.addAll(sClassToAdapters.get(intrface));
}
if (adapterConstructors != null) {
sClassToAdapters.put(klass, adapterConstructors);
return GENERATED_CALLBACK;
}
return REFLECTIVE_CALLBACK;
}
代码语言:txt复制//getCallBack的参数object是我们getLifeCycle().addObserver(observer)时传入的监听者observer
static GenericLifecycleObserver getCallback(Object object) {
if (object instanceof FullLifecycleObserver) {
//第三种使用方式,因为DefaultLifecycleObserver继承与FullLifecycleObserver
return new FullLifecycleObserverAdapter((FullLifecycleObserver) object);
}
if (object instanceof GenericLifecycleObserver) {
//第二种使用方式,当我们使用直接继承GenericLifecycleObserver这种方法时,直接返回
return (GenericLifecycleObserver) object;
}
final Class<?> klass = object.getClass();
//第一种使用方式,当使用注解时,getObserverConstructorType的返回值是GENERATED_CALLBACK
int type = getObserverConstructorType(klass);
if (type == GENERATED_CALLBACK) {
List<Constructor<? extends GeneratedAdapter>> constructors = sClassToAdapters.get(klass);
if (constructors.size() == 1) {
GeneratedAdapter generatedAdapter = createGeneratedAdapter(constructors.get(0), object);
return new SingleGeneratedAdapterObserver(generatedAdapter);
}
GeneratedAdapter[] adapters = new GeneratedAdapter[constructors.size()];
for (int i = 0; i < constructors.size(); i ) {
adapters[i] = createGeneratedAdapter(constructors.get(i), object);
}
return new CompositeGeneratedAdaptersObserver(adapters);
}
//当oberver都不符合上面几种类型时,会直接实例化ReflectiveGenericLifecycleObserver
//作为替代返回(一般情况下,是不会走到这里的,可能是为了应对混淆机制而做的的一种安全模式)
//在ReflectiveGenericLifecycleObserver中会找oberver中的onLifecyleEvent注解,并且将这些带注解
//的方法生成MethodReference并添加到List<MethodReference>中,作为生命周期分发的调用方法
return new ReflectiveGenericLifecycleObserver(object);
}
好了,Lifecycling.getCallback()如果真的要详细的分析,篇幅会很大,在这里,我们粗略的分析了下。大家如果想深入了解,自己结合源码看是最好不过的。
总结一下注册的流程:
- Acitivty中调用LifecycleRegistry的addObserver,传入一个LifecycleObserver
- 传入的LifecycleObserver被封装成一个ObserverWithState存入集合中,当生命周期发生改变的时候,就会遍历这个ObserverWithState集合,并且调用ObserverWithState的dispatchEvent进行分发
- 在ObserverWithState构造方法中,调用了Lifecycling.getCallback(observer)生成了具体的 GenericLifecycleObserver对象返回。在ObserverWithState的dispatchEvent()方法中调用了GenericLifecycleObserver对象的onStateChanged方法进行事件分发
至于注销流程就很简单了,直接将observer从集合中remove,代码如下:
代码语言:txt复制@Override
public void removeObserver(@NonNull LifecycleObserver observer) {
// we consciously decided not to send destruction events here in opposition to addObserver.
// Our reasons for that:
// 1. These events haven't yet happened at all. In contrast to events in addObservers, that
// actually occurred but earlier.
// 2. There are cases when removeObserver happens as a consequence of some kind of fatal
// event. If removeObserver method sends destruction events, then a clean up routine becomes
// more cumbersome. More specific example of that is: your LifecycleObserver listens for
// a web connection, in the usual routine in OnStop method you report to a server that a
// session has just ended and you close the connection. Now let's assume now that you
// lost an internet and as a result you removed this observer. If you get destruction
// events in removeObserver, you should have a special case in your onStop method that
// checks if your web connection died and you shouldn't try to report anything to a server.
mObserverMap.remove(observer);
}
生命周期的分发流程
我们注册observer的时候,实际上是调用了SupportActivity中的mLifecycleRegistry对象的方法,那么我们分析下SupportActivity的onCreate方法:
代码语言:txt复制@Override
@SuppressWarnings("RestrictedApi")
protected void onCreate(@Nullable Bundle savedInstanceState) {
super.onCreate(savedInstanceState);
ReportFragment.injectIfNeededIn(this);
}
在onCreate中调用了ReportFragment的injectIfNeedIn方法。这个方法其实就是往Activity中添加了一个Fragment。我们知道,Fragment是依附于Activity上的,Fragment的生命周期跟随Activity的生命周期。既然这个ReportFragment能够感知Activity的生命周期,那么它是不是就是负责将生命周期事件分发给LifecycleObserver的呢?
代码语言:txt复制public class ReportFragment extends Fragment {
private static final String REPORT_FRAGMENT_TAG = "android.arch.lifecycle"
".LifecycleDispatcher.report_fragment_tag";
public static void injectIfNeededIn(Activity activity) {
// ProcessLifecycleOwner should always correctly work and some activities may not extend
// FragmentActivity from support lib, so we use framework fragments for activities
android.app.FragmentManager manager = activity.getFragmentManager();
if (manager.findFragmentByTag(REPORT_FRAGMENT_TAG) == null) {
manager.beginTransaction().add(new ReportFragment(), REPORT_FRAGMENT_TAG).commit();
// Hopefully, we are the first to make a transaction.
manager.executePendingTransactions();
}
}
static ReportFragment get(Activity activity) {
return (ReportFragment) activity.getFragmentManager().findFragmentByTag(
REPORT_FRAGMENT_TAG);
}
private ActivityInitializationListener mProcessListener;
private void dispatchCreate(ActivityInitializationListener listener) {
if (listener != null) {
listener.onCreate();
}
}
private void dispatchStart(ActivityInitializationListener listener) {
if (listener != null) {
listener.onStart();
}
}
private void dispatchResume(ActivityInitializationListener listener) {
if (listener != null) {
listener.onResume();
}
}
@Override
public void onActivityCreated(Bundle savedInstanceState) {
super.onActivityCreated(savedInstanceState);
dispatchCreate(mProcessListener);
dispatch(Lifecycle.Event.ON_CREATE);
}
@Override
public void onStart() {
super.onStart();
dispatchStart(mProcessListener);
dispatch(Lifecycle.Event.ON_START);
}
@Override
public void onResume() {
super.onResume();
dispatchResume(mProcessListener);
dispatch(Lifecycle.Event.ON_RESUME);
}
@Override
public void onPause() {
super.onPause();
dispatch(Lifecycle.Event.ON_PAUSE);
}
@Override
public void onStop() {
super.onStop();
dispatch(Lifecycle.Event.ON_STOP);
}
@Override
public void onDestroy() {
super.onDestroy();
dispatch(Lifecycle.Event.ON_DESTROY);
// just want to be sure that we won't leak reference to an activity
mProcessListener = null;
}
private void dispatch(Lifecycle.Event event) {
Activity activity = getActivity();
if (activity instanceof LifecycleRegistryOwner) {
((LifecycleRegistryOwner) activity).getLifecycle().handleLifecycleEvent(event);
return;
}
if (activity instanceof LifecycleOwner) {
Lifecycle lifecycle = ((LifecycleOwner) activity).getLifecycle();
if (lifecycle instanceof LifecycleRegistry) {
((LifecycleRegistry) lifecycle).handleLifecycleEvent(event);
}
}
}
void setProcessListener(ActivityInitializationListener processListener) {
mProcessListener = processListener;
}
interface ActivityInitializationListener {
void onCreate();
void onStart();
void onResume();
}
}
ReportFragment的代码很好理解,我们能够在代码里面发现Lifecycle.Event.xxx事件,并且在它的生命周期回调方法中将Lifecycle.Event.xxx事件传给了dispatch方法,很明显是用来分发生命周期的。在ReportFragment的dispatch方法中,调用了LifecycleRegistry的handleLifecycleEvent方法:
代码语言:txt复制public void handleLifecycleEvent(@NonNull Lifecycle.Event event) {
State next = getStateAfter(event);
moveToState(next);
}
在分析这个方法之前,我们先要了解Lifecycle的事件与状态:
代码语言:txt复制public abstract class Lifecycle {
public enum Event {
/**
* Constant for onCreate event of the {@link LifecycleOwner}.
*/
ON_CREATE,
/**
* Constant for onStart event of the {@link LifecycleOwner}.
*/
ON_START,
/**
* Constant for onResume event of the {@link LifecycleOwner}.
*/
ON_RESUME,
/**
* Constant for onPause event of the {@link LifecycleOwner}.
*/
ON_PAUSE,
/**
* Constant for onStop event of the {@link LifecycleOwner}.
*/
ON_STOP,
/**
* Constant for onDestroy event of the {@link LifecycleOwner}.
*/
ON_DESTROY,
/**
* An {@link Event Event} constant that can be used to match all events.
*/
ON_ANY
}
public enum State {
/**
* Destroyed state for a LifecycleOwner. After this event, this Lifecycle will not dispatch
* any more events. For instance, for an {@link android.app.Activity}, this state is reached
* <b>right before</b> Activity's {@link android.app.Activity#onDestroy() onDestroy} call.
*/
DESTROYED,
/**
* Initialized state for a LifecycleOwner. For an {@link android.app.Activity}, this is
* the state when it is constructed but has not received
* {@link android.app.Activity#onCreate(android.os.Bundle) onCreate} yet.
*/
INITIALIZED,
/**
* Created state for a LifecycleOwner. For an {@link android.app.Activity}, this state
* is reached in two cases:
* <ul>
* <li>after {@link android.app.Activity#onCreate(android.os.Bundle) onCreate} call;
* <li><b>right before</b> {@link android.app.Activity#onStop() onStop} call.
* </ul>
*/
CREATED,
/**
* Started state for a LifecycleOwner. For an {@link android.app.Activity}, this state
* is reached in two cases:
* <ul>
* <li>after {@link android.app.Activity#onStart() onStart} call;
* <li><b>right before</b> {@link android.app.Activity#onPause() onPause} call.
* </ul>
*/
STARTED,
/**
* Resumed state for a LifecycleOwner. For an {@link android.app.Activity}, this state
* is reached after {@link android.app.Activity#onResume() onResume} is called.
*/
RESUMED;
}
}
Lifecycle.Event对应activity的各个声明周期,Lifecycle.State则是Lifecycle的状态。在LifecycleRegistry 中定义了状态间的转化关系:
代码语言:txt复制public class LifecycleRegistry extends Lifecycle {
static State getStateAfter(Event event) {
switch (event) {
case ON_CREATE:
case ON_STOP:
return CREATED;
case ON_START:
case ON_PAUSE:
return STARTED;
case ON_RESUME:
return RESUMED;
case ON_DESTROY:
return DESTROYED;
case ON_ANY:
break;
}
throw new IllegalArgumentException("Unexpected event value " event);
}
private static Event downEvent(State state) {
switch (state) {
case INITIALIZED:
throw new IllegalArgumentException();
case CREATED:
return ON_DESTROY;
case STARTED:
return ON_STOP;
case RESUMED:
return ON_PAUSE;
case DESTROYED:
throw new IllegalArgumentException();
}
throw new IllegalArgumentException("Unexpected state value " state);
}
private static Event upEvent(State state) {
switch (state) {
case INITIALIZED:
case DESTROYED:
return ON_CREATE;
case CREATED:
return ON_START;
case STARTED:
return ON_RESUME;
case RESUMED:
throw new IllegalArgumentException();
}
throw new IllegalArgumentException("Unexpected state value " state);
}
}
这三个方法,可以总结为下面这样一张图:
downEvent 在图中表示从一个状态到他下面的那个状态,upEvent 则是往上。
了解了 Lifecycle 的状态后,我们继续来看 LifecycleRegistry。上面我们知道,当Activity的生命周期发生变化后,ReportFragment会感知到,从而会调用到dispatch方法,最终调用到LifecycleRegistry的 handleLifecycleEvent方法:
代码语言:txt复制public class LifecycleRegistry extends Lifecycle {
private int mAddingObserverCounter = 0;
private boolean mHandlingEvent = false;
private boolean mNewEventOccurred = false;
public void handleLifecycleEvent(@NonNull Lifecycle.Event event) {
State next = getStateAfter(event);
moveToState(next);
}
private void moveToState(State next) {
if (mState == next) {
return;
}
mState = next;
// 当我们在 LifecycleRegistry 回调 LifecycleObserver 的时候触发状态变化时,
// mHandlingEvent 为 true;
// 添加 observer 的时候,也可能会执行回调方法,这时候如果触发了状态变化,
// 则 mAddingObserverCounter != 0
if (mHandlingEvent || mAddingObserverCounter != 0) {
mNewEventOccurred = true;
// 不需要执行 sync。
// 执行到这里的情况是:sync() -> LifecycleObserver -> moveToState()
// 这里直接返回后,还是会回到 sync(),然后继续同步状态给 observer
// we will figure out what to do on upper level.
return;
}
mHandlingEvent = true;
// sync() 会把状态的变化转化为生命周期事件,然后转发给 LifecycleObserver
sync();
mHandlingEvent = false;
}
}
LifecycleRegistry 本来要做的事其实是很简单的,但由于他需要执行客户的代码,由此引入了很多额外的复杂度。原因是,客户代码并不处在我们的控制之下,他们可能做出任何可以做到的事。例如这里,在回调中又触发状态变化。类似的情况是,在持有锁的时候不调用客户代码,这个也会让实现变得比较复杂。
接下来我们看 sync():
代码语言:txt复制public class LifecycleRegistry extends Lifecycle {
/**
* Custom list that keeps observers and can handle removals / additions during traversal.
*
* 这个 Invariant 非常重要,他会影响到 sync() 的逻辑
* Invariant: at any moment of time for observer1 & observer2:
* if addition_order(observer1) < addition_order(observer2), then
* state(observer1) >= state(observer2),
*/
private FastSafeIterableMap<LifecycleObserver, ObserverWithState> mObserverMap =
new FastSafeIterableMap<>();
private void sync() {
LifecycleOwner lifecycleOwner = mLifecycleOwner.get();
if (lifecycleOwner == null) {
Log.w(LOG_TAG, "LifecycleOwner is garbage collected, you shouldn't try dispatch "
"new events from it.");
return;
}
while (!isSynced()) {
// mNewEventOccurred 是为了在 observer 触发状态变化时让 backwardPass/forwardPass()
// 提前返回用的。我们刚准备调他们,这里设置为 false 即可。
mNewEventOccurred = false;
// no need to check eldest for nullability, because isSynced does it for us.
if (mState.compareTo(mObserverMap.eldest().getValue().mState) < 0) {
// mObserverMap 里的元素的状态是非递增排列的,也就是说,队头的 state 最大
// 如果 mState 小于队列里最大的那个,说明有元素需要更新状态
// 为了维持 mObserverMap 的 Invariant,这里我们需要从队尾往前更新元素的状态
backwardPass(lifecycleOwner);
}
Entry<LifecycleObserver, ObserverWithState> newest = mObserverMap.newest();
// 如果 mNewEventOccurred,说明在上面调用 backwardPass() 时,客户触发了状态修改
if (!mNewEventOccurred && newest != null
&& mState.compareTo(newest.getValue().mState) > 0) {
forwardPass(lifecycleOwner);
}
}
mNewEventOccurred = false;
}
// 判断是否需要同步,如果所有的observer的状态都已经同步完,返回 true,否则返回false
private boolean isSynced() {
if (mObserverMap.size() == 0) {
return true;
}
//eldestObserverState是最早添加的observer,newestObserverState是最新添加的observer
State eldestObserverState = mObserverMap.eldest().getValue().mState;
State newestObserverState = mObserverMap.newest().getValue().mState;
//因为我们保证队头的state >= 后面的元素的state,所以只要判断头尾就够了
//如果最新的和最老的Observer的状态不一致或者当前的状态和最新的状态不一致时,那么需要进行状态同步
return eldestObserverState == newestObserverState && mState == newestObserverState;
}
}
sync() 的主要作用就是根据把 mObserverMap 里所有元素的状态都同步为 mState。我们继续看剩下的 backwardPass/forwardPass:
代码语言:txt复制public class LifecycleRegistry extends Lifecycle {
// 这段注释应该是这整个类里面最难理解的了吧,至少对于我来说是这样
// we have to keep it for cases:
// void onStart() {
// // removeObserver(this),说明 this 是一个 LifecycleObserver
// // 所以这里说的是,我们在回调里执行了下面两个操作
// mRegistry.removeObserver(this);
// mRegistry.add(newObserver);
// }
// 假定现在我们要从 CREATED 转到 STARTED 状态(也就是说,mState 现在是 STARTED)。
// 这种情况下,只有将新的 observer 设置为 CREATED 状态,它的 onStart 才会被调用
// 为了得到这个 CREATED,在这里才引入了 mParentStates。在 forwardPass 中执行
// pushParentState(observer.mState) 时,observer.mState 就是我们需要的 CREATED。
// backwardPass 的情况类似。
// newObserver should be brought only to CREATED state during the execution of
// this onStart method. our invariant with mObserverMap doesn't help, because parent observer
// is no longer in the map.
private ArrayList<State> mParentStates = new ArrayList<>();
//第一个while循坏遍历我们存储观察者的集合,
//第二个是要处理各个状态经过的event
private void forwardPass(LifecycleOwner lifecycleOwner) {
// 从队头开始迭代
Iterator<Entry<LifecycleObserver, ObserverWithState>> ascendingIterator =
mObserverMap.iteratorWithAdditions();
while (ascendingIterator.hasNext() && !mNewEventOccurred) {
Entry<LifecycleObserver, ObserverWithState> entry = ascendingIterator.next();
ObserverWithState observer = entry.getValue();
while ((observer.mState.compareTo(mState) < 0 && !mNewEventOccurred
// 可能在回调客户代码的时候,客户把自己移除了
&& mObserverMap.contains(entry.getKey()))) {
pushParentState(observer.mState);
//upEvent 返回所要经历的event
//例如:当前是 STARTED , 那么他的经过的 events 就是 ON_RESUME
observer.dispatchEvent(lifecycleOwner, upEvent(observer.mState));
popParentState();
}
}
}
private void backwardPass(LifecycleOwner lifecycleOwner) {
// 从队尾开始迭代
Iterator<Entry<LifecycleObserver, ObserverWithState>> descendingIterator =
mObserverMap.descendingIterator();
while (descendingIterator.hasNext() && !mNewEventOccurred) {
Entry<LifecycleObserver, ObserverWithState> entry = descendingIterator.next();
ObserverWithState observer = entry.getValue();
while ((observer.mState.compareTo(mState) > 0 && !mNewEventOccurred
&& mObserverMap.contains(entry.getKey()))) {
Event event = downEvent(observer.mState);
pushParentState(getStateAfter(event));
observer.dispatchEvent(lifecycleOwner, event);
popParentState();
}
}
}
private void popParentState() {
mParentStates.remove(mParentStates.size() - 1);
}
private void pushParentState(State state) {
mParentStates.add(state);
}
}
提示:在看这forwardPass以及backwardPass这两个方法时,参考上面的状态转换图
- 假设当前集合中所有**
ObserverWithState
元素都处于CREATED
状态。此时接着收到了一个ON_START
事件,从图可以看出,接下来应该是要转换到STARTED
状态。由于STARTED
大于CREATED
,所以会执行forwardPass
方法。forwardPass
里调用upEvent(observer.mState)
,返回从CREATED
往上到STARTED
需要发送的事件,也就是ON_START
,于是ON_START
事件发送给了观察者。** - 假设当前
LifecycleRegistry
**的mState
处于**RESUMED
**状态。然后调用**addObserver
**方法新添加一个**LifecycleObserver
**,该observer会被封装成ObserverWithState
存进集合中,此时这个新的**ObserverWithState
处于****INITIALIZED
**状态,由于RESUMED
大于**INITIALIZED
,所以会**执行forwardPass
方法。****ObserverWithState
****的状态会按照 `INITIALIZED -> CREATED -> STARTED -> RESUMED` 这样的顺序变迁。**
总结
--
一些个人疑问:
- 疑点1:为什么不直接在SupportActivity的生命周期函数中给Lifecycle分发生命周期事件,而是要加一个Fragment呢?
因为不是所有的页面都继承AppCompatActivity,为了兼容非AppCompatActivity,所以封装一个同样具有生命周期的Fragment来给Lifecycle分发生命周期事件。显然Fragment 侵入性低。
- 疑点2:为什么用ReportFragment分发生命周期而不直接使用ActivityLifecycleCallbacks的回调来处理Lifecycle生命周期的变化?
由于 ActivityLifecycleCallbacks 的回调比 Fragment 和 Activity 还要早,实际上未真正执行对应的生命周期方法
Lifecycle的分析我们在这里就到此为止了,最后附上幅流程图,帮助理解并记忆: