今天,我结合代码来详细介绍如何使用 SciSharp STACK 的 TensorFlow.NET 来训练CNN模型,该模型主要实现 图像的分类 ,可以直接移植该代码在 CPU 或 GPU 下使用,并针对你们自己本地的图像数据集进行训练和推理。TensorFlow.NET是基于 .NET Standard 框架的完整实现的TensorFlow,可以支持 .NET Framework
或 .NET CORE
, TensorFlow.NET 为广大.NET开发者提供了完美的机器学习框架选择。
SciSharp STACK:https://github.com/SciSharp
什么是TensorFlow.NET?
TensorFlow.NET 是 SciSharp STACK
开源社区团队的贡献,其使命是打造一个完全属于.NET开发者自己的机器学习平台,特别对于C#开发人员来说,是一个“0”学习成本的机器学习平台,该平台集成了大量API和底层封装,力图使TensorFlow的Python代码风格和编程习惯可以无缝移植到.NET平台,下图是同样TF任务的Python实现和C#实现的语法相似度对比,从中读者基本可以略窥一二。
由于TensorFlow.NET在.NET平台的优秀性能,同时搭配SciSharp的NumSharp、SharpCV、Pandas.NET、Keras.NET、Matplotlib.Net等模块,可以完全脱离Python环境使用,目前已经被微软ML.NET官方的底层算法集成,并被谷歌写入TensorFlow官网教程推荐给全球开发者。
· SciSharp 产品结构
· 微软 ML.NET底层集成算法
· 谷歌官方推荐.NET开发者使用
URL: https://www.tensorflow.org/versions/r2.0/api_docs
项目说明
本文利用TensorFlow.NET构建简单的图像分类模型,针对工业现场的印刷字符进行单字符OCR识别,从工业相机获取原始大尺寸的图像,前期使用OpenCV进行图像预处理和字符分割,提取出单个字符的小图,送入TF进行推理,推理的结果按照顺序组合成完整的字符串,返回至主程序逻辑进行后续的生产线工序。
实际使用中,如果你们需要训练自己的图像,只需要把训练的文件夹按照规定的顺序替换成你们自己的图片即可。支持GPU或CPU方式,该项目的完整代码在GitHub如下:
https://github.com/SciSharp/SciSharp-Stack-Examples/blob/master/src/TensorFlowNET.Examples/ImageProcessing/CnnInYourOwnData.cs
模型介绍
本项目的CNN模型主要由 2个卷积层&池化层 和 1个全连接层 组成,激活函数使用常见的Relu,是一个比较浅的卷积神经网络模型。其中超参数之一"学习率",采用了自定义的动态下降的学习率,后面会有详细说明。具体每一层的Shape参考下图:
数据集说明
为了模型测试的训练速度考虑,图像数据集主要节选了一小部分的OCR字符(X、Y、Z),数据集的特征如下:
· 分类数量:3 classes 【X/Y/Z】
· 图像尺寸:Width 64 × Height 64
· 图像通道:1 channel(灰度图)
· 数据集数量:
o train:X - 384pcs ;Y - 384pcs ;Z - 384pcs
o validation:X - 96pcs ;Y - 96pcs ;Z - 96pcs
o test:X - 96pcs ;Y - 96pcs ;Z - 96pcs
· 其它说明:数据集已经经过 随机 翻转/平移/缩放/镜像 等预处理进行增强
· 整体数据集情况如下图所示:
在这里插入图片描述
在这里插入图片描述
代码说明
环境设置
· .NET 框架:使用.NET Framework 4.7.2及以上,或者使用.NET CORE 2.2及以上
· CPU 配置:Any CPU 或 X64 皆可
· GPU 配置:需要自行配置好CUDA和环境变量,建议 CUDA v10.1,Cudnn v7.5
类库和命名空间引用
1. 从NuGet安装必要的依赖项,主要是SciSharp相关的类库,如下图所示:
注意事项:尽量安装最新版本的类库,CV须使用 SciSharp 的 SharpCV 方便内部变量传递
代码语言:javascript复制<PackageReference Include="Colorful.Console" Version="1.2.9" />
<PackageReference Include="Newtonsoft.Json" Version="12.0.3" />
<PackageReference Include="SciSharp.TensorFlow.Redist" Version="1.15.0" />
<PackageReference Include="SciSharp.TensorFlowHub" Version="0.0.5" />
<PackageReference Include="SharpCV" Version="0.2.0" />
<PackageReference Include="SharpZipLib" Version="1.2.0" />
<PackageReference Include="System.Drawing.Common" Version="4.7.0" />
<PackageReference Include="TensorFlow.NET" Version="0.14.0" />
2. 引用命名空间,包括 NumSharp、Tensorflow 和 SharpCV ;
代码语言:javascript复制 using NumSharp;
using NumSharp.Backends;
using NumSharp.Backends.Unmanaged;
using SharpCV;
using System;
using System.Collections;
using System.Collections.Generic;
using System.Diagnostics;
using System.IO;
using System.Linq;
using System.Runtime.CompilerServices;
using Tensorflow;
using static Tensorflow.Binding;
using static SharpCV.Binding;
using System.Collections.Concurrent;
using System.Threading.Tasks;
主逻辑结构
主逻辑:
1. 准备数据
2. 创建计算图
3. 训练
4. 预测
代码语言:javascript复制public bool Run()
{
PrepareData();
BuildGraph();
using (var sess = tf.Session())
{
Train(sess);
Test(sess);
}
TestDataOutput();
return accuracy_test > 0.98;
}
数据集载入
数据集下载和解压
· 数据集地址:
https://github.com/SciSharp/SciSharp-Stack-Examples/blob/master/data/data_CnnInYourOwnData.zip
· 数据集下载和解压代码 ( 部分封装的方法请参考 GitHub完整代码 ):
代码语言:javascript复制· string url = "https://github.com/SciSharp/SciSharp-Stack-Examples/blob/master/data/data_CnnInYourOwnData.zip";
· Directory.CreateDirectory(Name);
· Utility.Web.Download(url, Name, "data_CnnInYourOwnData.zip");
· Utility.Compress.UnZip(Name "\data_CnnInYourOwnData.zip", Name);
字典创建
读取目录下的子文件夹名称,作为分类的字典,方便后面One-hot使用
代码语言:javascript复制 private void FillDictionaryLabel(string DirPath)
{
string[] str_dir = Directory.GetDirectories(DirPath, "*", SearchOption.TopDirectoryOnly);
int str_dir_num = str_dir.Length;
if (str_dir_num > 0)
{
Dict_Label = new Dictionary<Int64, string>();
for (int i = 0; i < str_dir_num; i )
{
string label = (str_dir[i].Replace(DirPath "\", "")).Split('\').First();
Dict_Label.Add(i, label);
print(i.ToString() " : " label);
}
n_classes = Dict_Label.Count;
}
}
文件List读取和打乱
从文件夹中读取train、validation、test的list,并随机打乱顺序。
- 读取目录
ArrayFileName_Train = Directory.GetFiles(Name "\train", "*.*", SearchOption.AllDirectories);
ArrayLabel_Train = GetLabelArray(ArrayFileName_Train);
ArrayFileName_Validation = Directory.GetFiles(Name "\validation", "*.*", SearchOption.AllDirectories);
ArrayLabel_Validation = GetLabelArray(ArrayFileName_Validation);
ArrayFileName_Test = Directory.GetFiles(Name "\test", "*.*", SearchOption.AllDirectories);
ArrayLabel_Test = GetLabelArray(ArrayFileName_Test);
- 获得标签
private Int64[] GetLabelArray(string[] FilesArray)
{
Int64[] ArrayLabel = new Int64[FilesArray.Length];
for (int i = 0; i < ArrayLabel.Length; i )
{
string[] labels = FilesArray[i].Split('\');
string label = labels[labels.Length - 2];
ArrayLabel[i] = Dict_Label.Single(k => k.Value == label).Key;
}
return ArrayLabel;
}
- 随机乱序
public (string[], Int64[]) ShuffleArray(int count, string[] images, Int64[] labels)
{
ArrayList mylist = new ArrayList();
string[] new_images = new string[count];
Int64[] new_labels = new Int64[count];
Random r = new Random();
for (int i = 0; i < count; i )
{
mylist.Add(i);
}
for (int i = 0; i < count; i )
{
int rand = r.Next(mylist.Count);
new_images[i] = images[(int)(mylist[rand])];
new_labels[i] = labels[(int)(mylist[rand])];
mylist.RemoveAt(rand);
}
print("shuffle array list:" count.ToString());
return (new_images, new_labels);
}
部分数据集预先载入
Validation/Test数据集和标签一次性预先载入成NDArray格式。
代码语言:javascript复制private void LoadImagesToNDArray()
{
//Load labels
y_valid = np.eye(Dict_Label.Count)[new NDArray(ArrayLabel_Validation)];
y_test = np.eye(Dict_Label.Count)[new NDArray(ArrayLabel_Test)];
print("Load Labels To NDArray : OK!");
//Load Images
x_valid = np.zeros(ArrayFileName_Validation.Length, img_h, img_w, n_channels);
x_test = np.zeros(ArrayFileName_Test.Length, img_h, img_w, n_channels);
LoadImage(ArrayFileName_Validation, x_valid, "validation");
LoadImage(ArrayFileName_Test, x_test, "test");
print("Load Images To NDArray : OK!");
}
private void LoadImage(string[] a, NDArray b, string c)
{
for (int i = 0; i < a.Length; i )
{
b[i] = ReadTensorFromImageFile(a[i]);
Console.Write(".");
}
Console.WriteLine();
Console.WriteLine("Load Images To NDArray: " c);
}
private NDArray ReadTensorFromImageFile(string file_name)
{
using (var graph = tf.Graph().as_default())
{
var file_reader = tf.read_file(file_name, "file_reader");
var decodeJpeg = tf.image.decode_jpeg(file_reader, channels: n_channels, name: "DecodeJpeg");
var cast = tf.cast(decodeJpeg, tf.float32);
var dims_expander = tf.expand_dims(cast, 0);
var resize = tf.constant(new int[] { img_h, img_w });
var bilinear = tf.image.resize_bilinear(dims_expander, resize);
var sub = tf.subtract(bilinear, new float[] { img_mean });
var normalized = tf.divide(sub, new float[] { img_std });
using (var sess = tf.Session(graph))
{
return sess.run(normalized);
}
}
}
计算图构建
构建CNN静态计算图,其中学习率每n轮Epoch进行1次递减。
代码语言:javascript复制#region BuildGraph
public Graph BuildGraph()
{
var graph = new Graph().as_default();
tf_with(tf.name_scope("Input"), delegate
{
x = tf.placeholder(tf.float32, shape: (-1, img_h, img_w, n_channels), name: "X");
y = tf.placeholder(tf.float32, shape: (-1, n_classes), name: "Y");
});
var conv1 = conv_layer(x, filter_size1, num_filters1, stride1, name: "conv1");
var pool1 = max_pool(conv1, ksize: 2, stride: 2, name: "pool1");
var conv2 = conv_layer(pool1, filter_size2, num_filters2, stride2, name: "conv2");
var pool2 = max_pool(conv2, ksize: 2, stride: 2, name: "pool2");
var layer_flat = flatten_layer(pool2);
var fc1 = fc_layer(layer_flat, h1, "FC1", use_relu: true);
var output_logits = fc_layer(fc1, n_classes, "OUT", use_relu: false);
//Some important parameter saved with graph , easy to load later
var img_h_t = tf.constant(img_h, name: "img_h");
var img_w_t = tf.constant(img_w, name: "img_w");
var img_mean_t = tf.constant(img_mean, name: "img_mean");
var img_std_t = tf.constant(img_std, name: "img_std");
var channels_t = tf.constant(n_channels, name: "img_channels");
//learning rate decay
gloabl_steps = tf.Variable(0, trainable: false);
learning_rate = tf.Variable(learning_rate_base);
//create train images graph
tf_with(tf.variable_scope("LoadImage"), delegate
{
decodeJpeg = tf.placeholder(tf.@byte, name: "DecodeJpeg");
var cast = tf.cast(decodeJpeg, tf.float32);
var dims_expander = tf.expand_dims(cast, 0);
var resize = tf.constant(new int[] { img_h, img_w });
var bilinear = tf.image.resize_bilinear(dims_expander, resize);
var sub = tf.subtract(bilinear, new float[] { img_mean });
normalized = tf.divide(sub, new float[] { img_std }, name: "normalized");
});
tf_with(tf.variable_scope("Train"), delegate
{
tf_with(tf.variable_scope("Loss"), delegate
{
loss = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(labels: y, logits: output_logits), name: "loss");
});
tf_with(tf.variable_scope("Optimizer"), delegate
{
optimizer = tf.train.AdamOptimizer(learning_rate: learning_rate, name: "Adam-op").minimize(loss, global_step: gloabl_steps);
});
tf_with(tf.variable_scope("Accuracy"), delegate
{
var correct_prediction = tf.equal(tf.argmax(output_logits, 1), tf.argmax(y, 1), name: "correct_pred");
accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32), name: "accuracy");
});
tf_with(tf.variable_scope("Prediction"), delegate
{
cls_prediction = tf.argmax(output_logits, axis: 1, name: "predictions");
prob = tf.nn.softmax(output_logits, axis: 1, name: "prob");
});
});
return graph;
}
/// <summary>
/// Create a 2D convolution layer
/// </summary>
/// <param name="x">input from previous layer</param>
/// <param name="filter_size">size of each filter</param>
/// <param name="num_filters">number of filters(or output feature maps)</param>
/// <param name="stride">filter stride</param>
/// <param name="name">layer name</param>
/// <returns>The output array</returns>
private Tensor conv_layer(Tensor x, int filter_size, int num_filters, int stride, string name)
{
return tf_with(tf.variable_scope(name), delegate
{
var num_in_channel = x.shape[x.NDims - 1];
var shape = new[] { filter_size, filter_size, num_in_channel, num_filters };
var W = weight_variable("W", shape);
// var tf.summary.histogram("weight", W);
var b = bias_variable("b", new[] { num_filters });
// tf.summary.histogram("bias", b);
var layer = tf.nn.conv2d(x, W,
strides: new[] { 1, stride, stride, 1 },
padding: "SAME");
layer = b;
return tf.nn.relu(layer);
});
}
/// <summary>
/// Create a max pooling layer
/// </summary>
/// <param name="x">input to max-pooling layer</param>
/// <param name="ksize">size of the max-pooling filter</param>
/// <param name="stride">stride of the max-pooling filter</param>
/// <param name="name">layer name</param>
/// <returns>The output array</returns>
private Tensor max_pool(Tensor x, int ksize, int stride, string name)
{
return tf.nn.max_pool(x,
ksize: new[] { 1, ksize, ksize, 1 },
strides: new[] { 1, stride, stride, 1 },
padding: "SAME",
name: name);
}
/// <summary>
/// Flattens the output of the convolutional layer to be fed into fully-connected layer
/// </summary>
/// <param name="layer">input array</param>
/// <returns>flattened array</returns>
private Tensor flatten_layer(Tensor layer)
{
return tf_with(tf.variable_scope("Flatten_layer"), delegate
{
var layer_shape = layer.TensorShape;
var num_features = layer_shape[new Slice(1, 4)].size;
var layer_flat = tf.reshape(layer, new[] { -1, num_features });
return layer_flat;
});
}
/// <summary>
/// Create a weight variable with appropriate initialization
/// </summary>
/// <param name="name"></param>
/// <param name="shape"></param>
/// <returns></returns>
private RefVariable weight_variable(string name, int[] shape)
{
var initer = tf.truncated_normal_initializer(stddev: 0.01f);
return tf.get_variable(name,
dtype: tf.float32,
shape: shape,
initializer: initer);
}
/// <summary>
/// Create a bias variable with appropriate initialization
/// </summary>
/// <param name="name"></param>
/// <param name="shape"></param>
/// <returns></returns>
private RefVariable bias_variable(string name, int[] shape)
{
var initial = tf.constant(0f, shape: shape, dtype: tf.float32);
return tf.get_variable(name,
dtype: tf.float32,
initializer: initial);
}
/// <summary>
/// Create a fully-connected layer
/// </summary>
/// <param name="x">input from previous layer</param>
/// <param name="num_units">number of hidden units in the fully-connected layer</param>
/// <param name="name">layer name</param>
/// <param name="use_relu">boolean to add ReLU non-linearity (or not)</param>
/// <returns>The output array</returns>
private Tensor fc_layer(Tensor x, int num_units, string name, bool use_relu = true)
{
return tf_with(tf.variable_scope(name), delegate
{
var in_dim = x.shape[1];
var W = weight_variable("W_" name, shape: new[] { in_dim, num_units });
var b = bias_variable("b_" name, new[] { num_units });
var layer = tf.matmul(x, W) b;
if (use_relu)
layer = tf.nn.relu(layer);
return layer;
});
}
#endregion
模型训练和模型保存
· Batch数据集的读取,采用了 SharpCV 的cv2.imread,可以直接读取本地图像文件至NDArray,实现CV和Numpy的无缝对接;
· 使用.NET的异步线程安全队列BlockingCollection,实现TensorFlow原生的队列管理器FIFOQueue;
- 在训练模型的时候,我们需要将样本从硬盘读取到内存之后,才能进行训练。我们在会话中运行多个线程,并加入队列管理器进行线程间的文件入队出队操作,并限制队列容量,主线程可以利用队列中的数据进行训练,另一个线程进行本地文件的IO读取,这样可以实现数据的读取和模型的训练是异步的,降低训练时间。
· 模型的保存,可以选择每轮训练都保存,或最佳训练模型保存
代码语言:javascript复制· #region Train
· public void Train(Session sess)
· {
· // Number of training iterations in each epoch
· var num_tr_iter = (ArrayLabel_Train.Length) / batch_size;
·
· var init = tf.global_variables_initializer();
· sess.run(init);
·
· var saver = tf.train.Saver(tf.global_variables(), max_to_keep: 10);
·
· path_model = Name "\MODEL";
· Directory.CreateDirectory(path_model);
·
· float loss_val = 100.0f;
· float accuracy_val = 0f;
·
· var sw = new Stopwatch();
· sw.Start();
· foreach (var epoch in range(epochs))
· {
· print($"Training epoch: {epoch 1}");
· // Randomly shuffle the training data at the beginning of each epoch
· (ArrayFileName_Train, ArrayLabel_Train) = ShuffleArray(ArrayLabel_Train.Length, ArrayFileName_Train, ArrayLabel_Train);
· y_train = np.eye(Dict_Label.Count)[new NDArray(ArrayLabel_Train)];
·
· //decay learning rate
· if (learning_rate_step != 0)
· {
· if ((epoch != 0) && (epoch % learning_rate_step == 0))
· {
· learning_rate_base = learning_rate_base * learning_rate_decay;
· if (learning_rate_base <= learning_rate_min) { learning_rate_base = learning_rate_min; }
· sess.run(tf.assign(learning_rate, learning_rate_base));
· }
· }
·
· //Load local images asynchronously,use queue,improve train efficiency
· BlockingCollection<(NDArray c_x, NDArray c_y, int iter)> BlockC = new BlockingCollection<(NDArray C1, NDArray C2, int iter)>(TrainQueueCapa);
· Task.Run(() =>
· {
· foreach (var iteration in range(num_tr_iter))
· {
· var start = iteration * batch_size;
· var end = (iteration 1) * batch_size;
· (NDArray x_batch, NDArray y_batch) = GetNextBatch(sess, ArrayFileName_Train, y_train, start, end);
· BlockC.Add((x_batch, y_batch, iteration));
· }
· BlockC.CompleteAdding();
· });
·
· foreach (var item in BlockC.GetConsumingEnumerable())
· {
· sess.run(optimizer, (x, item.c_x), (y, item.c_y));
·
· if (item.iter % display_freq == 0)
· {
· // Calculate and display the batch loss and accuracy
· var result = sess.run(new[] { loss, accuracy }, new FeedItem(x, item.c_x), new FeedItem(y, item.c_y));
· loss_val = result[0];
· accuracy_val = result[1];
· print("CNN:" ($"iter {item.iter.ToString("000")}: Loss={loss_val.ToString("0.0000")}, Training Accuracy={accuracy_val.ToString("P")} {sw.ElapsedMilliseconds}ms"));
· sw.Restart();
· }
· }
·
· // Run validation after every epoch
· (loss_val, accuracy_val) = sess.run((loss, accuracy), (x, x_valid), (y, y_valid));
· print("CNN:" "---------------------------------------------------------");
· print("CNN:" $"gloabl steps: {sess.run(gloabl_steps) },learning rate: {sess.run(learning_rate)}, validation loss: {loss_val.ToString("0.0000")}, validation accuracy: {accuracy_val.ToString("P")}");
· print("CNN:" "---------------------------------------------------------");
·
· if (SaverBest)
· {
· if (accuracy_val > max_accuracy)
· {
· max_accuracy = accuracy_val;
· saver.save(sess, path_model "\CNN_Best");
· print("CKPT Model is save.");
· }
· }
· else
· {
· saver.save(sess, path_model string.Format("\CNN_Epoch_{0}_Loss_{1}_Acc_{2}", epoch, loss_val, accuracy_val));
· print("CKPT Model is save.");
· }
· }
· Write_Dictionary(path_model "\dic.txt", Dict_Label);
· }
· private void Write_Dictionary(string path, Dictionary<Int64, string> mydic)
· {
· FileStream fs = new FileStream(path, FileMode.Create);
· StreamWriter sw = new StreamWriter(fs);
· foreach (var d in mydic) { sw.Write(d.Key "," d.Value "rn"); }
· sw.Flush();
· sw.Close();
· fs.Close();
· print("Write_Dictionary");
· }
· private (NDArray, NDArray) Randomize(NDArray x, NDArray y)
· {
· var perm = np.random.permutation(y.shape[0]);
· np.random.shuffle(perm);
· return (x[perm], y[perm]);
· }
· private (NDArray, NDArray) GetNextBatch(NDArray x, NDArray y, int start, int end)
· {
· var slice = new Slice(start, end);
· var x_batch = x[slice];
· var y_batch = y[slice];
· return (x_batch, y_batch);
· }
· private unsafe (NDArray, NDArray) GetNextBatch(Session sess, string[] x, NDArray y, int start, int end)
· {
· NDArray x_batch = np.zeros(end - start, img_h, img_w, n_channels);
· int n = 0;
· for (int i = start; i < end; i )
· {
· NDArray img4 = cv2.imread(x[i], IMREAD_COLOR.IMREAD_GRAYSCALE);
· x_batch[n] = sess.run(normalized, (decodeJpeg, img4));
· n ;
· }
· var slice = new Slice(start, end);
· var y_batch = y[slice];
· return (x_batch, y_batch);
· }
· #endregion
测试集预测
· 训练完成的模型对test数据集进行预测,并统计准确率
· 计算图中增加了一个提取预测结果Top-1的概率的节点,最后测试集预测的时候可以把详细的预测数据进行输出,方便实际工程中进行调试和优化。
代码语言:javascript复制· public void Test(Session sess)
· {
· (loss_test, accuracy_test) = sess.run((loss, accuracy), (x, x_test), (y, y_test));
· print("CNN:" "---------------------------------------------------------");
· print("CNN:" $"Test loss: {loss_test.ToString("0.0000")}, test accuracy: {accuracy_test.ToString("P")}");
· print("CNN:" "---------------------------------------------------------");
·
· (Test_Cls, Test_Data) = sess.run((cls_prediction, prob), (x, x_test));
·
· }
· private void TestDataOutput()
· {
· for (int i = 0; i < ArrayLabel_Test.Length; i )
· {
· Int64 real = ArrayLabel_Test[i];
· int predict = (int)(Test_Cls[i]);
· var probability = Test_Data[i, predict];
· string result = (real == predict) ? "OK" : "NG";
· string fileName = ArrayFileName_Test[i];
· string real_str = Dict_Label[real];
· string predict_str = Dict_Label[predict];
· print((i 1).ToString() "|" "result:" result "|" "real_str:" real_str "|"
· "predict_str:" predict_str "|" "probability:" probability.GetSingle().ToString() "|"
· "fileName:" fileName);
· }
· }
总结
本文主要是 .NET下的TensorFlow在实际工业现场视觉检测项目中的应用,使用SciSharp的TensorFlow.NET构建了简单的CNN图像分类模型,该模型包含输入层、卷积与池化层、扁平化层、全连接层和输出层,这些层都是CNN分类模型的必要的层,针对工业现场的实际图像进行了分类,分类准确性较高。
完整代码可以直接用于大家自己的数据集进行训练,已经在工业现场经过大量测试,可以在GPU或CPU环境下运行,只需要更换tensorflow.dll文件即可实现训练环境的切换。
同时,训练完成的模型文件,可以使用 “CKPT Meta” 或 冻结成“PB” 2种方式,进行现场的部署,模型部署和现场应用推理可以全部在.NET平台下进行,实现工业现场程序的无缝对接。摆脱了以往Python下 需要通过Flask搭建服务器进行数据通讯交互 的方式,现场部署应用时无需配置Python和TensorFlow的环境【无需对工业现场的原有PC升级安装一大堆环境】,整个过程全部使用传统的.NET的DLL引用的方式。