NodeJS之加解密Crypto

2021-12-27 08:37:07 浏览数 (1)

互联网时代,网络上的数据量每天都在以惊人的速度增长。同时,各类网络安全问题层出不穷。在信息安全重要性日益凸显的今天,作为一名开发者,需要加强对安全的认识,并通过技术手段增强服务的安全性。crypto模块的目的是为了提供通用的加密和哈希算法。用纯JavaScript代码实现这些功能不是不可能,但速度会非常慢。Nodejs用C/C 实现这些算法后,通过cypto这个模块暴露为JavaScript接口,这样用起来方便,运行速度也快。

编码方式

为什么信息传输需要编码? 在开发加密解密数据的时候碰到需要把加密好的字节数组转换成 String 对象用于网络传输的需求,如果把字节数组直接转换成 UTF-8 等编码方式的话肯定会存在某些编码没有对应的字符(8bit只能表示128个字符),在编码和解析过程中会出错,不能正确地表达信息。这时就可以通过常用的二进制数据编码方式 Base64 编码或者 Hex 编码来实现。

「hex编码」

  • 编码原理

将一个8位的字节数据用两个16进制数表示出来

  1. 将8位二进制码重新分组成两个4位的字节
  2. 其中一个字节的低4位是原字节的高4位,另一个字节的低4位是原数据的低4位
  3. 高4位都补0,然后输出这两个字节对应的十六进制数字作为编码
  • 例子
代码语言:javascript复制
ASCII码:A(65)

二进制码:0100 0001

重新分组: 00000100  00000001

十六进制: 4         1

Hex编码:41

就算原文件是纯英文内容,编码后内容也和原文完全不一样,普通人难以阅读但由于只有16个字符,听说一些程序员大牛能够记下他们的映射关系,从而达到读hex编码和读原文一样的效果。另外,数据在经过hex编码后,空间占用变成了原来的2倍。

「base64编码」

  • 编码原理

Base64编码是通过64个字符来表示二进制数据,64个字符表示二进制数据只能表示6位,所以它可以通过4个 Base64字符来表示3个字节,如下是Base64的字符编码表

img

  • 举个Base64编码的例子,图就很浅显易懂了

img

  • 字符串长度不是3的倍数时补0,也就是“=”

img

由64个字符组成,比hex编码更难阅读,但由于每3个字节会被编码为4个字符。

所以,空间占用会是原来的4/3,比hex要节省空间。另外要注意的是,虽然Base64编码后的数据难以阅读,但不能将其作为加密算法使用,因为它解码都不需要你提供密钥啊

「urlencode编码」

  • 编码原理

urlencode编码,看名字就就知道是设计给url编码的对于a-zA-Z0-9.-_ ,urlencode都不会做任何处理原样输出,而其它字节会被编码为%xx(16进制)的形式,其中xx就是这个字节对应的hex编码。由于英文字符原样保留,对于以英文为主的内容,可读性最好,空间占用几乎不变,而对于非英文内容,每个字节会被编码为%xx的3个字符,空间占用是原来的3倍,所以urlencode是一个对英文友好的编码方案。

「Hash」

摘要:将不固定长度的消息作为输入Hash函数,生成固定长度的输出,这段输出称之为摘要 适用场景:敏感信息的校验和存储、验证消息完整 & 未被篡改

「特点」

  1. 输出长度固定:输入长度不固定,输出长度固定(因算法而异,常见的有MD5、SHA系列)。
  2. 运算不可逆:已知运算结果的情况下,无法通过通过逆运算得到原始字符串。
  3. 高度离散:输入的微小变化,可导致运算结果差异巨大。
  4. 弱碰撞性:不同输入的散列值可能相同。

以MD5为例

MD5(Message-Digest Algorithm)是计算机安全领域广泛使用的散列函数(又称哈希算法、摘要算法),主要用来确保消息的完整和一致性。 常见的应用场景:密码保护、下载文件校验等。

「应用场景」

  1. 文件完整性校验:比如从网上下载一个软件,一般网站都会将软件的md5值附在网页上,用户下载完软件后,可对下载到本地的软件进行md5运算,然后跟网站上的md5值进行对比,确保软件的完整性
  2. 密码保护:将md5后的密码保存到数据库,而不是保存明文密码,避免拖库等事件发生后,明文密码泄漏。
  3. 防篡改:比如数字证书的防篡改,就用到了摘要算法。(当然还要结合数字签名等手段)

简单的md5运算

  • hash.digest([encoding])

计算摘要。encoding可以是hexbase64或其他。如果声明了encoding,那么返回字符串。否则,返回Buffer实例。注意,调用hash.digest()后,hash对象就作废了,再次调用就会报错。

  • hash.update(data[, input_encoding])

input_encoding可以是utf8ascii或者其他。如果data是字符串,且没有指定 input_encoding,则默认是utf8。注意,hash.update()方法可以调用多次。

代码语言:javascript复制
const crypto = require('crypto');
const fs = require('fs');

const FILE_PATH = './index.txt'
const ENCODING = 'hex';

const md5 = crypto.createHash('md5');
const content = fs.readFileSync(FILE_PATH);
const result = md5.update(content).digest(ENCODING);
console.log(result);

// f62091d58876a322864f5a522eb05052

密码保护

前面提到,将明文密码保存到数据库是很不安全的 最不济也要进行md5后进行保存 比如用户密码是123456,md5运行后,得到输出:e10adc3949ba59abbe56e057f20f883e

这样至少有两个好处:

  1. 防内部攻击:网站开发者也不知道用户的明文密码,避免开发者拿着用户明文密码干坏事,以这种形式来保护用户的隐私
  2. 防外部攻击:如网站被黑客入侵,黑客也只能拿到md5后的密码,而不是用户的明文密码,保证了密码的安全性
代码语言:javascript复制
const crypto = require('crypto');

const cryptPwd = (password) => {
    const md5 = crypto.createHash('md5');
    return md5.update(password).digest('hex');
}

const password = '123456';
const cryptPassword = cryptPwd(password);
console.log(cryptPassword);

// e10adc3949ba59abbe56e057f20f883e
  • 前面提到,通过对用户密码进行md5运算来提高安全性。
    • 但实际上,这样的安全性是很差的,为什么呢?
    • 稍微修改下上面的例子,可能你就明白了。相同的明文密码,md5值也是相同的。
  • 也就是说当攻击者知道算法是md5,且数据库里存储的密码值为e10adc3949ba59abbe56e057f20f883e时,理论上可以可以猜到,用户的明文密码就是123456
  • 事实上,彩虹表就是这么进行暴力破解的:事先将常见明文密码的md5值运算好存起来,然后跟网站数据库里存储的密码进行匹配,就能够快速找到用户的明文密码。

那么有什么办法可以进一步提升安全性呢? 答案是:密码加盐。

「密码加盐」

“加盐”这个词看上去很玄乎,其实原理很简单 就是在密码特定位置插入特定字符串后,再对修改后的字符串进行md5运算。

同样的密码,当“盐”值不一样时,md5值的差异非常大

通过密码加盐,可以防止最初级的暴力破解,如果攻击者事先不知道”盐“值,破解的难度就会非常大

代码语言:javascript复制
const crypto = require('crypto');

const cryptPwd = (password, salt) => {
    const saltPassword = `${password}:${salt}`;
    console.log(`原始密码:${password}`);
    console.log(`加盐密码:${saltPassword}`);

    const md5 = crypto.createHash('md5');
    const result = md5.update(password).digest('hex');
    console.log(`加盐密码的MD5值:${result}`)
}



const password = '123456';
const salt = 'abc'
cryptPwd(password, salt);
/*
原始密码:123456
加盐密码:123456:abc
加盐密码的MD5值:e10adc3949ba59abbe56e057f20f883e
*/

「密码加盐:随机盐值」

通过密码加盐,密码的安全性已经提高了不少 但其实上面的例子存在不少问题

  • 假设字符串拼接算法、盐值已外泄,上面的代码至少存在下面问题:
  1. 短盐值:需要穷举的可能性较少,容易暴力破解,一般采用长盐值来解决。
  2. 盐值固定:类似的,攻击者只需要把常用密码 盐值的hash值表算出来。
  • 短盐值自不必说,应该避免
    • 对于为什么不应该使用固定盐值,这里需要多解释一下。很多时候,我们的盐值是硬编码到我们的代码里的(比如配置文件),一旦攻击者通过某种手段获知了盐值,那么,只需要针对这串固定的盐值进行暴力穷举就行了
  • 比如上面的代码,当你知道盐值是abc时,立刻就能猜到51011af1892f59e74baf61f3d4389092对应的明文密码是123456

那么,该怎么优化呢?答案是:随机盐值。

可以看到,密码同样是123456,由于采用了随机盐值,前后运算得出的结果是不同的

这样带来的好处是,多个用户,同样的密码,攻击者需要进行多次运算才能够完全破解

同样是纯数字3位短盐值,随机盐值破解所需的运算量 >> 固定盐值

示例代码如下

代码语言:javascript复制
const crypto = require('crypto');

const getRandomSalt = () => {
    return Math.random().toString().slice(2,5);
}

const cryptPwd = (password, salt) => {
    const saltPassword = `${password}:${salt}`;
    console.log(`原始密码:${password}`);
    console.log(`加盐密码:${saltPassword}`);

    const md5 = crypto.createHash('md5');
    const result = md5.update(saltPassword).digest('hex');
    console.log(`加盐密码的MD5值:${result}`)
}

const password = '123456';

cryptPwd(password, getRandomSalt());

/*
原始密码:123456
加盐密码:123456:126
加盐密码的MD5值:3aeb1848ff63aa32b262bc3f8dd5bd82
*/

cryptPwd(password, getRandomSalt());

/*
原始密码:123456
加盐密码:123456:232
加盐密码的MD5值:21a427268a5094322146e18e47b135fb
*/

「HMAC功能」

HMAC的全称是Hash-based Message Authentication Code,也即在hash的加盐运算。 具体到使用的话,跟hash模块差不多,选定hash算法,指定“盐”即可。 和上面的例子的区别是一个是手动拼盐值,一个是利用HMAC模块

代码语言:javascript复制
const crypto = require("crypto")
const fs = require("fs")

const FILE_PATH = "./index.txt"
const SECRET = 'secret'
const content = fs.readFileSync(FILE_PATH,{encoding:'utf8'})
const hmac = crypto.createHmac('sha256', SECRET);

hmac.update(content)
const output = hmac.digest('hex')
console.log(`Hmac: ${output}`)

// Hmac: 6f438ef66d3806ae14d6692d9610e55c41ebb4eb3ee73911a4d512bd1cade976

注:大文件可流式处理

加密 / 解密

加解密主要用到下面两组方法:

  • 加密:
    • crypto.createCipher(algorithm, password)
    • crypto.createCipheriv(algorithm, key, iv)
  • 解密:
    • crypto.createDecipher(algorithm, password)
    • crypto.createDecipheriv(algorithm, key, iv)

「crypto.createCipher / crypto.createDecipher」

先来看下 crypto.createCipher(algorithm, password),两个参数分别是加密算法、密码

  • algorithm:加密算法,比如aes192
    • 具体有哪些可选的算法,依赖于本地openssl的版本

可以通过openssl list-cipher-algorithms命令查看支持哪些算法

  • password:用来生成密钥(key)、初始化向量(IV)

crypto.createDecipher(algorithm, password)可以看作 crypto.createCipher(algorithm, password) 逆向操作

代码语言:javascript复制
const crypto = require("crypto")

const SECRET = 'secret'
const ALGORITHM = 'aes192'
const content = 'Hello Node.js'
const encoding = 'hex'

// 加密
const cipher = crypto.createCipher(ALGORITHM, SECRET)
cipher.update(content)
const output = cipher.final(encoding)
console.log(output)
// 944e6e3c21d6eb8568bd6a9716631e、e

// 解密
const decipher = crypto.createDecipher(ALGORITHM, SECRET)
decipher.update(output, encoding)
const input = decipher.final('utf8')
console.log(input)

// Hello Node.js

「crypto.createCipheriv / crypto.createDecipheriv」

相对于 crypto.createCipher() 来说,crypto.createCipheriv() 需要提供keyiv,而 crypto.createCipher() 是根据用户提供的 password 算出来的 key、iv 可以是Buffer,也可以是utf8编码的字符串,这里需要关注的是它们的长度:

  • key:根据选择的算法有关
    • 比如 aes128、aes192、aes256,长度分别是128、192、256位(16、24、32字节)
  • iv:初始化向量,都是128位(16字节),也可以理解为密码盐的一种
代码语言:javascript复制
const crypto = require("crypto")

const key = crypto.randomBytes(192 / 8)
const iv = crypto.randomBytes(128 / 8)
const algorithm = 'aes192'
const encoding = 'hex'

const encrypt = (text) => {
    const cipher = crypto.createCipheriv(algorithm, key, iv)
    cipher.update(text)
    return cipher.final(encoding)
}

const decrypt = (encrypted) => {
    const decipher = crypto.createDecipheriv(algorithm, key, iv)
    decipher.update(encrypted, encoding)
    return decipher.final('utf8')
}

const content = 'Hello Node.js'
const crypted = encrypt(content)
console.log(crypted)

// db75f3e9e78fba0401ca82527a0bbd62

const decrypted = decrypt(crypted)
console.log(decrypted)

// Hello Node.js

「数字签名」 「/ 签名校验」

  • 假设:
    • 服务端原始信息为M,摘要算法为Hash,Hash(M)得出的摘要是H
    • 公钥为Pub,私钥为Piv,非对称加密算法为Encrypt,非对称解密算法为Decrypt
    • Encrypt(H)得到的结果是S
    • 客户端拿到的信息为M1,利用Hash(M1)得出的结果是H1
  • 数字签名的产生、校验步骤分别如下:
    • 数字签名的产生步骤:
      • 利用摘要算法Hash算出M的摘要,即Hash(M) == H
      • 利用非对称加密算法对摘要进行加密Encrypt( H, Piv ),得到数字签名S
    • 数字签名的校验步骤:
      • 利用解密算法D对数字签名进行解密,即Decrypt(S) == H
      • 计算M1的摘要 Hash(M1) == H1,对比 H、H1,如果两者相同,则通过校验

私钥如何生成不是这里的重点,这里采用网上的服务来生成。

了解了数字签名产生、校验的原理后,相信下面的代码很容易理解:

代码语言:javascript复制
const crypto = require('crypto');
const fs = require('fs');
const privateKey = fs.readFileSync('./private-key.pem');  // 私钥
const publicKey = fs.readFileSync('./public-key.pem');  // 公钥
const algorithm = 'RSA-SHA256';  // 加密算法 vs 摘要算法
const encoding = 'hex'

// 数字签名
function sign(text){
    const sign = crypto.createSign(algorithm);
    sign.update(text);
    return sign.sign(privateKey, encoding);
}

// 校验签名
function verify(oriContent, signature){
    const verifier = crypto.createVerify(algorithm);
    verifier.update(oriContent);
    return verifier.verify(publicKey, signature, encoding);
}

// 对内容进行签名
const content = 'hello world';
const signature = sign(content);
console.log(signature);

// 校验签名,如果通过,返回true
const verified = verify(content, signature);
console.log(verified);

DH(DiffieHellman)

DiffieHellman:Diffie–Hellman key exchange,缩写为D-H,是一种安全协议,常用于密钥交换,让通信双方在预先没有对方信息的情况下,通过不安全通信信道,创建一个密钥。这个密钥可以在后续的通信中,作为对称加密的密钥加密传递的信息。

  • 原理解析

假设客户端、服务端挑选两个素数a、p(都公开),然后

  • 客户端:选择自然数Xa,Ya = a^Xa mod p,并将Ya发送给服务端;
  • 服务端:选择自然数Xb,Yb = a^Xb mod p,并将Yb发送给客户端;
  • 客户端:计算 Ka = Yb^Xa mod p
  • 服务端:计算 Kb = Ya^Xb mod p

Ka = Yb^Xa mod p = (a^Xb mod p)^Xa mod p = a^(Xb * Xa) mod p = (a^Xa mod p)^Xb mod p = Ya^Xb mod p = Kb 可以看到,尽管客户端、服务端彼此不知道对方的Xa、Xb,但算出了相等的secret

代码语言:javascript复制
const crypto = require('crypto');

const primeLength = 1024;  // 素数p的长度
const generator = 5;  // 素数a

// 创建客户端的DH实例
const client = crypto.createDiffieHellman(primeLength, generator);
// 产生公、私钥对,Ya = a^Xa mod p
const clientKey = client.generateKeys();

// 创建服务端的DH实例,采用跟客户端相同的素数a、p
const server = crypto.createDiffieHellman(client.getPrime(), client.getGenerator());
// 产生公、私钥对,Yb = a^Xb mod p
const serverKey = server.generateKeys();

// 计算 Ka = Yb^Xa mod p
const clientSecret = client.computeSecret(server.getPublicKey());
// 计算 Kb = Ya^Xb mod p
const serverSecret = server.computeSecret(client.getPublicKey());

// 由于素数p是动态生成的,所以每次打印都不一样
// 但是 clientSecret === serverSecret
console.log(clientSecret.toString('hex'));
console.log(serverSecret.toString('hex'));
// 39edfedad4f1be731977436936ca844e50ebc90953ad208c71d7f2dc1772409962ec3eb90eaf99db5948f089e1d4951f148bd7ff76c18b53ff6be32f267fc54535928ce4acf15d923cfd0caec45db95b206e7636128210ea6813a20fb09cbfb06214b2f488716fea32788023d98cb4cb7fe39b68bd3563b3b34257e37f6b7fb7

// 39edfedad4f1be731977436936ca844e50ebc90953ad208c71d7f2dc1772409962ec3eb90eaf99db5948f089e1d4951f148bd7ff76c18b53ff6be32f267fc54535928ce4acf15d923cfd0caec45db95b206e7636128210ea6813a20fb09cbfb06214b2f488716fea32788023d98cb4cb7fe39b68bd3563b3b34257e37f6b7fb7

ECDH(Elliptic Curve Diffie-Hellma)

ECDH和DH原理类似,都是安全密钥协商协议。 相对于DH协议,结合椭圆曲线密码学ECC加速,运算更节省CPU资源

  • ECDH(「Elliptic Curve Diffie-Hellman」 )原理如下

img

代码语言:javascript复制
const crypto = require('crypto');

const G = 'secp521r1';
const encoding = 'hex'

const server = crypto.createECDH(G);
const serverKey = server.generateKeys();

const client = crypto.createECDH(G);
const clientKey = client.generateKeys();

const serverSecret = server.computeSecret(clientKey);
const clientSecret = client.computeSecret(serverKey);

console.log(serverSecret.toString(encoding));
console.log(clientSecret.toString(encoding));
// 01c418be1b479f936397d4c1653ad77fa28fade67ff058dc18264a72bd1fc208ea6cac4dad996fda55bf271e84f0faef085173257b67bf21f95b09acee4d0a204517

// 01c418be1b479f936397d4c1653ad77fa28fade67ff058dc18264a72bd1fc208ea6cac4dad996fda55bf271e84f0faef085173257b67bf21f95b09acee4d0a204517

ECDHE(Elliptic Curve Diffie-Hellma Ephemeral)

普通的ECDH算法也存在一定缺陷,比如密钥协商的时候有一方的私钥总是一样的,一般都是Server方固定,Client方私钥随机生成。随着时间的延长,黑客可以截获到海量的密钥协商过程(有些数据是公开的),黑客就可以依据这些数据暴力破解出Server的私钥,然后就可以计算出会话密钥了,加密的数据也会随之被破解。固定一方的私钥会有被破解的风险,那么就让双方的私钥在每次密钥交换通信时,都是随机生成的、临时的,这个算法就是ECDH的增强版:ECDHE, E 全称是 Ephemeral(临时性的)。

扩展

学习这块儿知识的同时也学习了很多密码学相关知识,发现越挖越深快陷进去了

0 人点赞