尚硅谷电商数仓 6.0 hive DIM 层

2024-08-22 12:48:56 浏览数 (1)

介绍

DIM 层是用来存放MySQL业务维度(状态)数据的一个层,即维度层存放维度表

主要作用是从各个维度对数据进行分析

该项目主要有以下维度表:

商品维度表 优惠券维度表 活动维度表

地区维度表 营销坑位维度表 营销渠道维度表

日期维度表

用户维度表

建表

  • 表数据(字段)来源:参考业务数据库的表字段 主维表:业务数据库中主要用于分析维度字段的表 相关维表:业务数据库中相关用于分析维度字段的表
  • 维度表就是一个个字段(维度)【维度就是某个角度】组成,这些字段有关联规律。如果维度特别简单,特别独立,只在特殊场合用,其实这个表可以不用创建,可以在事实表直接使用。
  • 尽可能生成丰富的维度属性:字段越多越好
  • 编码和文字共存
  • 沉淀出通用的维度属性
  • 数据存储格式为orc列式存储 snappy压缩
  • 命名规范为dim_表名_全量表或者拉链表标识(full/zip)
代码语言:shell复制
vim  CreateHiveDIMTable.hql

chmod 777 ./CreateHiveDIMTable.hql
代码语言:shell复制
CREATE DATABASE IF NOT EXISTS gmall;
DROP TABLE IF EXISTS gmall.dim_sku_full;
CREATE EXTERNAL TABLE gmall.dim_sku_full
(
    `id`                   STRING COMMENT 'SKU_ID',
    `price`                DECIMAL(16, 2) COMMENT '商品价格',
    `sku_name`             STRING COMMENT '商品名称',
    `sku_desc`             STRING COMMENT '商品描述',
    `weight`               DECIMAL(16, 2) COMMENT '重量',
    `is_sale`              BOOLEAN COMMENT '是否在售',
    `spu_id`               STRING COMMENT 'SPU编号',
    `spu_name`             STRING COMMENT 'SPU名称',
    `category3_id`         STRING COMMENT '三级品类ID',
    `category3_name`       STRING COMMENT '三级品类名称',
    `category2_id`         STRING COMMENT '二级品类id',
    `category2_name`       STRING COMMENT '二级品类名称',
    `category1_id`         STRING COMMENT '一级品类ID',
    `category1_name`       STRING COMMENT '一级品类名称',
    `tm_id`                  STRING COMMENT '品牌ID',
    `tm_name`               STRING COMMENT '品牌名称',
    `sku_attr_values`      ARRAY<STRUCT<attr_id :STRING,
        value_id :STRING,
        attr_name :STRING,
        value_name:STRING>> COMMENT '平台属性',
    `sku_sale_attr_values` ARRAY<STRUCT<sale_attr_id :STRING,
        sale_attr_value_id :STRING,
        sale_attr_name :STRING,
        sale_attr_value_name:STRING>> COMMENT '销售属性',
    `create_time`          STRING COMMENT '创建时间'
) COMMENT '商品维度表'
    PARTITIONED BY (`dt` STRING)
    STORED AS ORC
    LOCATION '/warehouse/gmall/dim/dim_sku_full/'
    TBLPROPERTIES ('orc.compress' = 'snappy');


DROP TABLE IF EXISTS gmall.dim_coupon_full;
CREATE EXTERNAL TABLE gmall.dim_coupon_full
(
    `id`                  STRING COMMENT '优惠券编号',
    `coupon_name`       STRING COMMENT '优惠券名称',
    `coupon_type_code` STRING COMMENT '优惠券类型编码',
    `coupon_type_name` STRING COMMENT '优惠券类型名称',
    `condition_amount` DECIMAL(16, 2) COMMENT '满额数',
    `condition_num`     BIGINT COMMENT '满件数',
    `activity_id`       STRING COMMENT '活动编号',
    `benefit_amount`   DECIMAL(16, 2) COMMENT '减免金额',
    `benefit_discount` DECIMAL(16, 2) COMMENT '折扣',
    `benefit_rule`     STRING COMMENT '优惠规则:满元*减*元,满*件打*折',
    `create_time`       STRING COMMENT '创建时间',
    `range_type_code`  STRING COMMENT '优惠范围类型编码',
    `range_type_name`  STRING COMMENT '优惠范围类型名称',
    `limit_num`         BIGINT COMMENT '最多领取次数',
    `taken_count`       BIGINT COMMENT '已领取次数',
    `start_time`        STRING COMMENT '可以领取的开始时间',
    `end_time`          STRING COMMENT '可以领取的结束时间',
    `operate_time`      STRING COMMENT '修改时间',
    `expire_time`       STRING COMMENT '过期时间'
) COMMENT '优惠券维度表'
    PARTITIONED BY (`dt` STRING)
    STORED AS ORC
    LOCATION '/warehouse/gmall/dim/dim_coupon_full/'
    TBLPROPERTIES ('orc.compress' = 'snappy');


DROP TABLE IF EXISTS gmall.dim_activity_full;
CREATE EXTERNAL TABLE gmall.dim_activity_full
(
    `activity_rule_id`   STRING COMMENT '活动规则ID',
    `activity_id`         STRING COMMENT '活动ID',
    `activity_name`       STRING COMMENT '活动名称',
    `activity_type_code` STRING COMMENT '活动类型编码',
    `activity_type_name` STRING COMMENT '活动类型名称',
    `activity_desc`       STRING COMMENT '活动描述',
    `start_time`           STRING COMMENT '开始时间',
    `end_time`             STRING COMMENT '结束时间',
    `create_time`          STRING COMMENT '创建时间',
    `condition_amount`    DECIMAL(16, 2) COMMENT '满减金额',
    `condition_num`       BIGINT COMMENT '满减件数',
    `benefit_amount`      DECIMAL(16, 2) COMMENT '优惠金额',
    `benefit_discount`   DECIMAL(16, 2) COMMENT '优惠折扣',
    `benefit_rule`        STRING COMMENT '优惠规则',
    `benefit_level`       STRING COMMENT '优惠级别'
) COMMENT '活动维度表'
    PARTITIONED BY (`dt` STRING)
    STORED AS ORC
    LOCATION '/warehouse/gmall/dim/dim_activity_full/'
    TBLPROPERTIES ('orc.compress' = 'snappy');


DROP TABLE IF EXISTS gmall.dim_province_full;
CREATE EXTERNAL TABLE gmall.dim_province_full
(
    `id`              STRING COMMENT '省份ID',
    `province_name` STRING COMMENT '省份名称',
    `area_code`     STRING COMMENT '地区编码',
    `iso_code`      STRING COMMENT '旧版国际标准地区编码,供可视化使用',
    `iso_3166_2`    STRING COMMENT '新版国际标准地区编码,供可视化使用',
    `region_id`     STRING COMMENT '地区ID',
    `region_name`   STRING COMMENT '地区名称'
) COMMENT '地区维度表'
    PARTITIONED BY (`dt` STRING)
    STORED AS ORC
    LOCATION '/warehouse/gmall/dim/dim_province_full/'
    TBLPROPERTIES ('orc.compress' = 'snappy');


DROP TABLE IF EXISTS gmall.dim_promotion_pos_full;
CREATE EXTERNAL TABLE gmall.dim_promotion_pos_full
(
    `id`                 STRING COMMENT '营销坑位ID',
    `pos_location`     STRING COMMENT '营销坑位位置',
    `pos_type`          STRING COMMENT '营销坑位类型 ',
    `promotion_type`   STRING COMMENT '营销类型',
    `create_time`       STRING COMMENT '创建时间',
    `operate_time`      STRING COMMENT '修改时间'
) COMMENT '营销坑位维度表'
    PARTITIONED BY (`dt` STRING)
    STORED AS ORC
    LOCATION '/warehouse/gmall/dim/dim_promotion_pos_full/'
    TBLPROPERTIES ('orc.compress' = 'snappy');


DROP TABLE IF EXISTS gmall.dim_promotion_refer_full;
CREATE EXTERNAL TABLE gmall.dim_promotion_refer_full
(
    `id`                    STRING COMMENT '营销渠道ID',
    `refer_name`          STRING COMMENT '营销渠道名称',
    `create_time`         STRING COMMENT '创建时间',
    `operate_time`        STRING COMMENT '修改时间'
) COMMENT '营销渠道维度表'
    PARTITIONED BY (`dt` STRING)
    STORED AS ORC
    LOCATION '/warehouse/gmall/dim/dim_promotion_refer_full/'
    TBLPROPERTIES ('orc.compress' = 'snappy');


DROP TABLE IF EXISTS gmall.dim_user_zip;
CREATE EXTERNAL TABLE gmall.dim_user_zip
(
    `id`           STRING COMMENT '用户ID',
    `name`         STRING COMMENT '用户姓名',
    `phone_num`    STRING COMMENT '手机号码',
    `email`        STRING COMMENT '邮箱',
    `user_level`   STRING COMMENT '用户等级',
    `birthday`     STRING COMMENT '生日',
    `gender`       STRING COMMENT '性别',
    `create_time`  STRING COMMENT '创建时间',
    `operate_time` STRING COMMENT '操作时间',
    `start_date`   STRING COMMENT '开始日期',
    `end_date`     STRING COMMENT '结束日期'
) COMMENT '用户维度表'
    PARTITIONED BY (`dt` STRING)
    STORED AS ORC
    LOCATION '/warehouse/gmall/dim/dim_user_zip/'
    TBLPROPERTIES ('orc.compress' = 'snappy');

日期维度表

通常情况下,时间维度表的数据并不是来自于业务系统,而是手动写入,并且由于时间维度表数据的可预见性,无须每日导入,一般可一次性导入一年的数据。

代码语言:shell复制
DROP TABLE IF EXISTS gmall.dim_date;
CREATE EXTERNAL TABLE gmall.dim_date
(
    `date_id`    STRING COMMENT '日期ID',
    `week_id`    STRING COMMENT '周ID,一年中的第几周',
    `week_day`   STRING COMMENT '周几',
    `day`         STRING COMMENT '每月的第几天',
    `month`       STRING COMMENT '一年中的第几月',
    `quarter`    STRING COMMENT '一年中的第几季度',
    `year`        STRING COMMENT '年份',
    `is_workday` STRING COMMENT '是否是工作日',
    `holiday_id` STRING COMMENT '节假日'
) COMMENT '日期维度表'
    STORED AS ORC
    LOCATION '/warehouse/gmall/dim/dim_date/'
    TBLPROPERTIES ('orc.compress' = 'snappy');
代码语言:shell复制
DROP TABLE IF EXISTS gmall.tmp_dim_date_info;
CREATE EXTERNAL TABLE gmall.tmp_dim_date_info (
    `date_id`       STRING COMMENT '日',
    `week_id`       STRING COMMENT '周ID',
    `week_day`      STRING COMMENT '周几',
    `day`            STRING COMMENT '每月的第几天',
    `month`          STRING COMMENT '第几月',
    `quarter`       STRING COMMENT '第几季度',
    `year`           STRING COMMENT '年',
    `is_workday`    STRING COMMENT '是否是工作日',
    `holiday_id`    STRING COMMENT '节假日'
) COMMENT '时间维度表'
ROW FORMAT DELIMITED FIELDS TERMINATED BY 't'
LOCATION '/warehouse/gmall/tmp/tmp_dim_date_info/';

将数据文件上传到HFDS上临时表路径/warehouse/gmall/tmp/tmp_dim_date_info

文件部分数据格式如下:

使用插入语句会自动将数据类型解析完成(临时表tsv ----> 维度表orc)

代码语言:shell复制
insert overwrite table gmall.dim_date select * from gmall.tmp_dim_date_info;

数据装载

因用户维度表有首日和每日的区分,因此我们采用首日和每日脚本分别来执行

具体参考脚本专栏 - - hive DIM 层数据装载解析

首日装载脚本

代码语言:shell复制
vim ods_to_dim_init.sh 

chmod 777 ./ods_to_dim_init.sh 
代码语言:shell复制
#!/bin/bash

APP=gmall

if [ -n "$2" ] ;then
   do_date=$2
else 
   echo "请传入日期参数"
   exit
fi 

dim_user_zip="
insert overwrite table ${APP}.dim_user_zip partition (dt = '9999-12-31')
select data.id,
       concat(substr(data.name, 1, 1), '*')                name,
       if(data.phone_num regexp '^(13[0-9]|14[01456879]|15[0-35-9]|16[2567]|17[0-8]|18[0-9]|19[0-35-9])\d{8}$',
          concat(substr(data.phone_num, 1, 3), '*'), null) phone_num,
       if(data.email regexp '^[a-zA-Z0-9_-] @[a-zA-Z0-9_-] (\.[a-zA-Z0-9_-] ) $',
          concat('*@', split(data.email, '@')[1]), null)   email,
       data.user_level,
       data.birthday,
       data.gender,
       data.create_time,
       data.operate_time,
       '$do_date'                                        start_date,
       '9999-12-31'                                        end_date
from ${APP}.ods_user_info_inc
where dt = '$do_date'
  and type = 'bootstrap-insert';
"

dim_sku_full="
with
sku as
(
    select
        id,
        price,
        sku_name,
        sku_desc,
        weight,
        is_sale,
        spu_id,
        category3_id,
        tm_id,
        create_time
    from ${APP}.ods_sku_info_full
    where dt='$do_date'
),
spu as
(
    select
        id,
        spu_name
    from ${APP}.ods_spu_info_full
    where dt='$do_date'
),
c3 as
(
    select
        id,
        name,
        category2_id
    from ${APP}.ods_base_category3_full
    where dt='$do_date'
),
c2 as
(
    select
        id,
        name,
        category1_id
    from ${APP}.ods_base_category2_full
    where dt='$do_date'
),
c1 as
(
    select
        id,
        name
    from ${APP}.ods_base_category1_full
    where dt='$do_date'
),
tm as
(
    select
        id,
        tm_name
    from ${APP}.ods_base_trademark_full
    where dt='$do_date'
),
attr as
(
    select
        sku_id,
        collect_set(named_struct('attr_id',attr_id,'value_id',value_id,'attr_name',attr_name,'value_name',value_name)) attrs
    from ${APP}.ods_sku_attr_value_full
    where dt='$do_date'
    group by sku_id
),
sale_attr as
(
    select
        sku_id,
        collect_set(named_struct('sale_attr_id',sale_attr_id,'sale_attr_value_id',sale_attr_value_id,'sale_attr_name',sale_attr_name,'sale_attr_value_name',sale_attr_value_name)) sale_attrs
    from ${APP}.ods_sku_sale_attr_value_full
    where dt='$do_date'
    group by sku_id
)
insert overwrite table ${APP}.dim_sku_full partition(dt='$do_date')
select
    sku.id,
    sku.price,
    sku.sku_name,
    sku.sku_desc,
    sku.weight,
    sku.is_sale,
    sku.spu_id,
    spu.spu_name,
    sku.category3_id,
    c3.name,
    c3.category2_id,
    c2.name,
    c2.category1_id,
    c1.name,
    sku.tm_id,
    tm.tm_name,
    attr.attrs,
    sale_attr.sale_attrs,
    sku.create_time
from sku
left join spu on sku.spu_id=spu.id
left join c3 on sku.category3_id=c3.id
left join c2 on c3.category2_id=c2.id
left join c1 on c2.category1_id=c1.id
left join tm on sku.tm_id=tm.id
left join attr on sku.id=attr.sku_id
left join sale_attr on sku.id=sale_attr.sku_id;
"

dim_province_full="
insert overwrite table ${APP}.dim_province_full partition(dt='$do_date')
select
    province.id,
    province.name,
    province.area_code,
    province.iso_code,
    province.iso_3166_2,
    region_id,
    region_name
from
(
    select
        id,
        name,
        region_id,
        area_code,
        iso_code,
        iso_3166_2
    from ${APP}.ods_base_province_full
    where dt='$do_date'
)province
left join
(
    select
        id,
        region_name
    from ${APP}.ods_base_region_full
    where dt='$do_date'
)region
on province.region_id=region.id;
"

dim_coupon_full="
insert overwrite table ${APP}.dim_coupon_full partition(dt='$do_date')
select
    id,
    coupon_name,
    coupon_type,
    coupon_dic.dic_name,
    condition_amount,
    condition_num,
    activity_id,
    benefit_amount,
    benefit_discount,
    case coupon_type
        when '3201' then concat('满',condition_amount,'元减',benefit_amount,'元')
        when '3202' then concat('满',condition_num,'件打', benefit_discount,' 折')
        when '3203' then concat('减',benefit_amount,'元')
    end benefit_rule,
    create_time,
    range_type,
    range_dic.dic_name,
    limit_num,
    taken_count,
    start_time,
    end_time,
    operate_time,
    expire_time
from
(
    select
        id,
        coupon_name,
        coupon_type,
        condition_amount,
        condition_num,
        activity_id,
        benefit_amount,
        benefit_discount,
        create_time,
        range_type,
        limit_num,
        taken_count,
        start_time,
        end_time,
        operate_time,
        expire_time
    from ${APP}.ods_coupon_info_full
    where dt='$do_date'
)ci
left join
(
    select
        dic_code,
        dic_name
    from ${APP}.ods_base_dic_full
    where dt='$do_date'
    and parent_code='32'
)coupon_dic
on ci.coupon_type=coupon_dic.dic_code
left join
(
    select
        dic_code,
        dic_name
    from ${APP}.ods_base_dic_full
    where dt='$do_date'
    and parent_code='33'
)range_dic
on ci.range_type=range_dic.dic_code;
"

dim_activity_full="
insert overwrite table ${APP}.dim_activity_full partition(dt='$do_date')
select
    rule.id,
    info.id,
    activity_name,
    rule.activity_type,
    dic.dic_name,
    activity_desc,
    start_time,
    end_time,
    create_time,
    condition_amount,
    condition_num,
    benefit_amount,
    benefit_discount,
    case rule.activity_type
        when '3101' then concat('满',condition_amount,'元减',benefit_amount,'元')
        when '3102' then concat('满',condition_num,'件打', benefit_discount,' 折')
        when '3103' then concat('打', benefit_discount,'折')
    end benefit_rule,
    benefit_level
from
(
    select
        id,
        activity_id,
        activity_type,
        condition_amount,
        condition_num,
        benefit_amount,
        benefit_discount,
        benefit_level
    from ${APP}.ods_activity_rule_full
    where dt='$do_date'
)rule
left join
(
    select
        id,
        activity_name,
        activity_type,
        activity_desc,
        start_time,
        end_time,
        create_time
    from ${APP}.ods_activity_info_full
    where dt='$do_date'
)info
on rule.activity_id=info.id
left join
(
    select
        dic_code,
        dic_name
    from ${APP}.ods_base_dic_full
    where dt='$do_date'
    and parent_code='31'
)dic
on rule.activity_type=dic.dic_code;
"

dim_promotion_pos_full="
insert overwrite table ${APP}.dim_promotion_pos_full partition(dt='$do_date')
select
    id,           
    pos_location,
    pos_type,
    promotion_type,
    create_time,
    operate_time   
from ${APP}.ods_promotion_pos_full 
where dt='$do_date';
"

dim_promotion_refer_full="
insert overwrite table ${APP}.dim_promotion_refer_full partition(dt='$do_date')
select
    id, 
    refer_name,
    create_time,
    operate_time
from ${APP}.ods_promotion_refer_full 
where dt='$do_date';
"


case $1 in
"dim_user_zip")
    hive -e "$dim_user_zip"
;;
"dim_sku_full")
    hive -e "$dim_sku_full"
;;
"dim_province_full")
    hive -e "$dim_province_full"
;;
"dim_coupon_full")
    hive -e "$dim_coupon_full"
;;
"dim_activity_full")
    hive -e "$dim_activity_full"
    ;;
"dim_promotion_pos_full")
    hive -e "$dim_promotion_pos_full"
;;
"dim_promotion_refer_full")
    hive -e "$dim_promotion_refer_full"
;;

"all")
    hive -e "$dim_user_zip$dim_sku_full$dim_province_full$dim_coupon_full$dim_activity_full$dim_promotion_refer_full$dim_promotion_pos_full"
;;
esac

每日装载脚本

代码语言:shell复制
vim ods_to_dim.sh 

chmod 777 ./ods_to_dim.sh 
代码语言:shell复制
#!/bin/bash

APP=gmall

# 如果是输入的日期按照取输入日期;如果没输入日期取当前时间的前一天
if [ -n "$2" ] ;then
    do_date=$2
else 
    do_date=`date -d "-1 day"  %F`
fi

dim_user_zip="
set hive.exec.dynamic.partition.mode=nonstrict;
insert overwrite table ${APP}.dim_user_zip partition (dt)
select id,
       name,
       phone_num,
       email,
       user_level,
       birthday,
       gender,
       create_time,
       operate_time,
       start_date,
       if(rn = 2, date_sub('$do_date', 1), end_date)     end_date,
       if(rn = 1, '9999-12-31', date_sub('$do_date', 1)) dt
from (
         select id,
                name,
                phone_num,
                email,
                user_level,
                birthday,
                gender,
                create_time,
                operate_time,
                start_date,
                end_date,
                row_number() over (partition by id order by start_date desc) rn
         from (
                  select id,
                         name,
                         phone_num,
                         email,
                         user_level,
                         birthday,
                         gender,
                         create_time,
                         operate_time,
                         start_date,
                         end_date
                  from ${APP}.dim_user_zip
                  where dt = '9999-12-31'
                  union
                  select id,
                         concat(substr(name, 1, 1), '*')                name,
                         if(phone_num regexp
                            '^(13[0-9]|14[01456879]|15[0-35-9]|16[2567]|17[0-8]|18[0-9]|19[0-35-9])\d{8}$',
                            concat(substr(phone_num, 1, 3), '*'), null) phone_num,
                         if(email regexp '^[a-zA-Z0-9_-] @[a-zA-Z0-9_-] (\.[a-zA-Z0-9_-] ) $',
                            concat('*@', split(email, '@')[1]), null)   email,
                         user_level,
                         birthday,
                         gender,
                         create_time,
                         operate_time,
                         '$do_date'                                   start_date,
                         '9999-12-31'                                   end_date
                  from (
                           select data.id,
                                  data.name,
                                  data.phone_num,
                                  data.email,
                                  data.user_level,
                                  data.birthday,
                                  data.gender,
                                  data.create_time,
                                  data.operate_time,
                                  row_number() over (partition by data.id order by ts desc) rn
                           from ${APP}.ods_user_info_inc
                           where dt = '$do_date'
                       ) t1
                  where rn = 1
              ) t2
     ) t3;
"

dim_sku_full="
with
sku as
(
    select
        id,
        price,
        sku_name,
        sku_desc,
        weight,
        is_sale,
        spu_id,
        category3_id,
        tm_id,
        create_time
    from ${APP}.ods_sku_info_full
    where dt='$do_date'
),
spu as
(
    select
        id,
        spu_name
    from ${APP}.ods_spu_info_full
    where dt='$do_date'
),
c3 as
(
    select
        id,
        name,
        category2_id
    from ${APP}.ods_base_category3_full
    where dt='$do_date'
),
c2 as
(
    select
        id,
        name,
        category1_id
    from ${APP}.ods_base_category2_full
    where dt='$do_date'
),
c1 as
(
    select
        id,
        name
    from ${APP}.ods_base_category1_full
    where dt='$do_date'
),
tm as
(
    select
        id,
        tm_name
    from ${APP}.ods_base_trademark_full
    where dt='$do_date'
),
attr as
(
    select
        sku_id,
        collect_set(named_struct('attr_id',attr_id,'value_id',value_id,'attr_name',attr_name,'value_name',value_name)) attrs
    from ${APP}.ods_sku_attr_value_full
    where dt='$do_date'
    group by sku_id
),
sale_attr as
(
    select
        sku_id,
        collect_set(named_struct('sale_attr_id',sale_attr_id,'sale_attr_value_id',sale_attr_value_id,'sale_attr_name',sale_attr_name,'sale_attr_value_name',sale_attr_value_name)) sale_attrs
    from ${APP}.ods_sku_sale_attr_value_full
    where dt='$do_date'
    group by sku_id
)
insert overwrite table ${APP}.dim_sku_full partition(dt='$do_date')
select
    sku.id,
    sku.price,
    sku.sku_name,
    sku.sku_desc,
    sku.weight,
    sku.is_sale,
    sku.spu_id,
    spu.spu_name,
    sku.category3_id,
    c3.name,
    c3.category2_id,
    c2.name,
    c2.category1_id,
    c1.name,
    sku.tm_id,
    tm.tm_name,
    attr.attrs,
    sale_attr.sale_attrs,
    sku.create_time
from sku
left join spu on sku.spu_id=spu.id
left join c3 on sku.category3_id=c3.id
left join c2 on c3.category2_id=c2.id
left join c1 on c2.category1_id=c1.id
left join tm on sku.tm_id=tm.id
left join attr on sku.id=attr.sku_id
left join sale_attr on sku.id=sale_attr.sku_id;
"

dim_province_full="
insert overwrite table ${APP}.dim_province_full partition(dt='$do_date')
select
    province.id,
    province.name,
    province.area_code,
    province.iso_code,
    province.iso_3166_2,
    region_id,
    region_name
from
(
    select
        id,
        name,
        region_id,
        area_code,
        iso_code,
        iso_3166_2
    from ${APP}.ods_base_province_full
    where dt='$do_date'
)province
left join
(
    select
        id,
        region_name
    from ${APP}.ods_base_region_full
    where dt='$do_date'
)region
on province.region_id=region.id;
"

dim_coupon_full="
insert overwrite table ${APP}.dim_coupon_full partition(dt='$do_date')
select
    id,
    coupon_name,
    coupon_type,
    coupon_dic.dic_name,
    condition_amount,
    condition_num,
    activity_id,
    benefit_amount,
    benefit_discount,
    case coupon_type
        when '3201' then concat('满',condition_amount,'元减',benefit_amount,'元')
        when '3202' then concat('满',condition_num,'件打', benefit_discount,' 折')
        when '3203' then concat('减',benefit_amount,'元')
    end benefit_rule,
    create_time,
    range_type,
    range_dic.dic_name,
    limit_num,
    taken_count,
    start_time,
    end_time,
    operate_time,
    expire_time
from
(
    select
        id,
        coupon_name,
        coupon_type,
        condition_amount,
        condition_num,
        activity_id,
        benefit_amount,
        benefit_discount,
        create_time,
        range_type,
        limit_num,
        taken_count,
        start_time,
        end_time,
        operate_time,
        expire_time
    from ${APP}.ods_coupon_info_full
    where dt='$do_date'
)ci
left join
(
    select
        dic_code,
        dic_name
    from ${APP}.ods_base_dic_full
    where dt='$do_date'
    and parent_code='32'
)coupon_dic
on ci.coupon_type=coupon_dic.dic_code
left join
(
    select
        dic_code,
        dic_name
    from ${APP}.ods_base_dic_full
    where dt='$do_date'
    and parent_code='33'
)range_dic
on ci.range_type=range_dic.dic_code;
"

dim_activity_full="
insert overwrite table ${APP}.dim_activity_full partition(dt='$do_date')
select
    rule.id,
    info.id,
    activity_name,
    rule.activity_type,
    dic.dic_name,
    activity_desc,
    start_time,
    end_time,
    create_time,
    condition_amount,
    condition_num,
    benefit_amount,
    benefit_discount,
    case rule.activity_type
        when '3101' then concat('满',condition_amount,'元减',benefit_amount,'元')
        when '3102' then concat('满',condition_num,'件打', benefit_discount,' 折')
        when '3103' then concat('打', benefit_discount,'折')
    end benefit_rule,
    benefit_level
from
(
    select
        id,
        activity_id,
        activity_type,
        condition_amount,
        condition_num,
        benefit_amount,
        benefit_discount,
        benefit_level
    from ${APP}.ods_activity_rule_full
    where dt='$do_date'
)rule
left join
(
    select
        id,
        activity_name,
        activity_type,
        activity_desc,
        start_time,
        end_time,
        create_time
    from ${APP}.ods_activity_info_full
    where dt='$do_date'
)info
on rule.activity_id=info.id
left join
(
    select
        dic_code,
        dic_name
    from ${APP}.ods_base_dic_full
    where dt='$do_date'
    and parent_code='31'
)dic
on rule.activity_type=dic.dic_code;
"


dim_promotion_pos_full="
insert overwrite table ${APP}.dim_promotion_pos_full partition(dt='$do_date')
select
    id,            
    pos_location,
    pos_type,
    promotion_type,
    create_time,
    operate_time
from ${APP}.ods_promotion_pos_full 
where dt='$do_date';
"

dim_promotion_refer_full="
insert overwrite table ${APP}.dim_promotion_refer_full partition(dt='$do_date')
select
    id, 
    refer_name,
    create_time,
    operate_time
from ${APP}.ods_promotion_refer_full 
where dt='$do_date';
"


case $1 in
"dim_user_zip")
    hive -e "$dim_user_zip"
;;
"dim_sku_full")
    hive -e "$dim_sku_full"
;;
"dim_province_full")
    hive -e "$dim_province_full"
;;
"dim_coupon_full")
    hive -e "$dim_coupon_full"
;;
"dim_activity_full")
    hive -e "$dim_activity_full"
;;
"dim_promotion_pos_full")
    hive -e "$dim_promotion_pos_full"
;;
"dim_promotion_refer_full")
    hive -e "$dim_promotion_refer_full"
;;

"all")
    hive -e "$dim_user_zip$dim_sku_full$dim_province_full$dim_coupon_full$dim_activity_full$dim_promotion_refer_full$dim_promotion_pos_full"
;;
esac

0 人点赞