推荐系统已经广泛应用于多个领域,其通过根据用户偏好推荐可能感兴趣的物品来进行辅助决策。其中比较流行的推荐算法是基于模型的方法,它对特定的目标进行优化以提高推荐性能。然而,这些传统的推荐模型通常只处理单一的目标,例如最小化预测误差或最大化推荐的排名质量。
近年来,考虑多目标推荐系统的需求日益增多。例如,可以通过优化推荐的准确性、新颖性和多样性等多个指标来构建完善的推荐模型。多目标优化方法已取得了很好的发展,并应用于推荐系统领域。在本篇文章中,该文提供了一个多目标推荐系统的全面文献综述 (Multi-objective Recommender Systems, MORS)。特别是,确定了多目标推荐系统在哪些情况下可以发挥作用,并总结了推荐系统的方法和评估方式,指出了现有的挑战或不足,最后为多目标推荐系统的发展提供了指导方针和建议。
https://www.sciencedirect.com/science/article/pii/S0925231221017185
这篇论文的主要贡献如下:
- 本文首次对多目标推荐系统进行了全面综述。
- 本文总结了多目标推荐方法发挥作用的情况,为推荐系统和该领域的研究人员提供了关于多目标优化的指导。
- 本文介绍并讨论了多目标优化技术及其在推荐系统中的应用。此外,还指出了当前发展中多目标推荐的弱点和挑战。
- 最后,本文为研究人员在模型开发和实验设计中选择合适的多目标优化方法提供了一个工作框架。
文中还具体介绍了评分预测与排序推荐的指标分类,以及介绍了新颖的推荐系统的分类,比如基于上下文的推荐、群组推荐、多尺度推荐、跨域推荐、多方推荐、多任务推荐等。
随后,本文还介绍了基于优化策略的多目标方法的分类,包括标量化方法、基于分布的启发式方法等。
在接下来的讨论中,本文首先确定多目标推荐系统可能有用的情况或背景。这些情况可以分为五类,如下表所示。其不仅根据场景对这些研究工作进行分类,还根据采用多目标优化方法的类别进行分类。
最后,该文根据下图的流程进行了详细介绍。
多目标优化已成为推荐系统领域的一个新兴问题和需求。本文总结了多目标推荐的使用情况,讨论了多目标推荐中使用的多目标优化方法,指出了目前研究的不足,为多目标推荐的未来发展提供了指导。