[平台建设] 大数据平台如何实现任务日志采集

2021-12-30 21:18:43 浏览数 (1)

背景

平台任务主要分3种: flink实时任务, spark任务,还有java任务,spark、flink 我们是运行在yarn 上, 日常排错我们通过查看yarn logs来定位, 但是会对日志存储设置一定的保留时间, 为了后续更好排查问题,希望能够将spark、flink、java任务都收集起来存储到ES中,提供统一查询服务给用户. 这是设计的动机.

针对这个想法,主要要解决几个问题?

  1. Flink、Spark、java 日志如何进行采集
  2. 如何在保证耦合度尽量低的情况下,同时保证不影响任务
  3. 部署方便, 用户端尽量少操作

调研

通过调研相关资料,选择基于Log4自定义Appender实现,实现方式比较优雅,轻量级, 好维护.

log4介绍

log4j主要有三个组件:

  • Logger:负责供客户端代码调用,执行debug(Object msg)、info(Object msg)、warn(Object msg)、error(Object msg)等方法。
  • Appender:负责日志的输出,Log4j已经实现了多种不同目标的输出方式,可以向文件输出日志、向控制台输出日志、向Socket输出日志等。
  • Layout:负责日志信息的格式化。

调用log4j各组件执行顺序:

实现自定义log4j Appender:

  • 继承log4j公共的基类:AppenderSkeleton
  • 打印日志核心方法:abstract protected void append(LoggingEvent event);
  • 初始化加载资源:public void activateOptions(),默认实现为空
  • 释放资源:public void close()
  • 是否需要按格式输出文本:public boolean requiresLayout()

正常情况下只需覆盖append方法即可。然后就可以在log4j中使用了

java任务采集

java任务, 只需要引入我们自己实现自定义的log4j Appender, 我们获取到相关的日志信息就可以进行后续操作.

Flink任务采集

Flink任务因为其提交在yarn上执行,我们需要采集除了日志信息之外,还要想办法获取任务对应的application id, 这样更方便用户查询对应日志,同时设计要满足可以进行查询taskManger,nodemanager各个节点日志

System.getProperty("sun.java.command") 获取当前正在执行的类, 根据其返回的字符串处理后,就可以获取需要的相关信息, 这个返回结果,我们在yarn log 是可以看到的,灵感也来与此

如何判断不同节点呢?

根据包含类 org.apache.flink.yarn.entrypoint.YarnJobClusterEntrypoint 判断是否是jobManager 日志

根据返回值包含org.apache.flink.yarn.YarnTaskExecutorRunner判断是否是taskManager节点日志

Spark任务采集

跟flink 处理类似

根据

org.apache.spark.executor.CoarseGrainedExecutorBackend 可以判断出是executor日志

org.apache.spark.deploy.yarn.ApplicationMaster 是driver日志

部署

1.log4j.properties 配置:

代码语言:javascript复制
log4j.rootCategory=INFO, customlog, console

 log4j.appender.customlog=com.aa.log.CustomlogAppender
 29 log4j.appender.customlog.layout.ConversionPattern=%d{yy/MM/dd HH:mm:ss} %p %c{1}: %m%n
 30 log4j.appender.customlog.layout=org.apache.log4j.PatternLayout

customlog 是我们自己定义的logAppender 实现

  1. 将自定义Appender程序打包
  2. 将其放到我们的Flink、Spark包下即可
  3. java 程序采集要引入我们的jar,排除其它日志框架引入

采集架构设计

  1. 通过log4j appender 将采集的日志发送到接收中心,这里注意搞个buffer,通过http批量发送到接收中心,日志太小过滤掉. 这里可以根据实际情况设置相应的策略,比如一分钟写入非常多的消息有可能用户乱打日志,我们就停止发送,避免将磁盘写满,影响其它用户使用
  2. 接收中心主要是负责接收到消息然后将其写入到kafka中.
  3. Flink 消费kafka的日志,进行简单的清洗转换后将数据sink到es中
  4. 用户通过界面根据各种条件如applicationId、时间、不同角色节点筛选,搜索到对应日志

总结

本文主要介绍了下基于log4j 自定义appender,实现了大数据平台相关任务日志的采集,针对不同类型任务的处理,获取最终我们平台搜索需要的功能. 日志采集注意采集量过猛可能会将磁盘打满,需要有相应的降级或者预防措施,用户不会考虑太多关于平台相关的东西. 大数据平台技术目前各大公司很多技术架构都差不多,就看细节的处理了.

参考

https://www.cnblogs.com/grh946/p/5977046.html

0 人点赞