一、题目描述
字典 wordList 中从单词 beginWord 和 endWord 的 转换序列 是一个按下述规格形成的序列: 序列中第一个单词是 beginWord 。 序列中最后一个单词是 endWord 。 每次转换只能改变一个字母。 转换过程中的中间单词必须是字典 wordList 中的单词。 给你两个单词 beginWord 和 endWord 和一个字典 wordList ,找到从 beginWord 到 endWord 的 最短转换序列 中的 单词数目 。如果不存在这样的转换序列,返回 0。
代码语言:javascript复制示例 1:
输入:beginWord = "hit", endWord = "cog", wordList = ["hot","dot","dog","lot","log","cog"]
输出:5
解释:一个最短转换序列是 "hit" -> "hot" -> "dot" -> "dog" -> "cog", 返回它的长度 5。
示例 2:
输入:beginWord = "hit", endWord = "cog", wordList = ["hot","dot","dog","lot","log"]
输出:0
解释:endWord "cog" 不在字典中,所以无法进行转换。
提示:
1 <= beginWord.length <= 10
endWord.length == beginWord.length
1 <= wordList.length <= 5000
wordList[i].length == beginWord.length
beginWord、endWord 和 wordList[i] 由小写英文字母组成
beginWord != endWord
wordList 中的所有字符串 互不相同
二、解题思路
以示例1为例,从这个图中可以看出 hit 到 cog的路线,不止一条,有三条,两条是最短的长度为5,一条长度为6。
本题只需要求出最短长度就可以了,不用找出路径。
所以这道题要解决两个问题:
1、图中的线是如何连在一起的 2、起点和终点的最短路径长度 首先题目中并没有给出点与点之间的连线,而是要我们自己去连,条件是字符只能差一个,所以判断点与点之间的关系,要自己判断是不是差一个字符,如果差一个字符,那就是有链接。
然后就是求起点和终点的最短路径长度,这里无向图求最短路,广搜最为合适,广搜只要搜到了终点,那么一定是最短的路径。因为广搜就是以起点中心向四周扩散的搜索。
本题如果用深搜,会非常麻烦。
另外需要有一个注意点:
本题是一个无向图,需要用标记位,标记着节点是否走过,否则就会死循环! 本题给出集合是数组型的,可以转成set结构,查找更快一些
三、代码
代码语言:javascript复制public class Solution {
public int ladderLength(String beginWord, String endWord, List<String> wordList) {
HashSet<String> wordSet = new HashSet<>(wordList); //转换为hashset加快速度
if (wordSet.size() == 0 || !wordSet.contains(endWord)) { //特殊情况判断
return 0;
}
Queue<String> queue = new LinkedList<>(); //bfs 队列
queue.offer(beginWord);
Map<String, Integer> map = new HashMap<>(); //记录单词对应路径长度
map.put(beginWord, 1);
while (!queue.isEmpty()) {
String word = queue.poll(); //取出队头单词
int path = map.get(word); //获取到该单词的路径长度
for (int i = 0; i < word.length(); i ) { //遍历单词的每个字符
char[] chars = word.toCharArray(); //将单词转换为char array,方便替换
for (char k = 'a'; k <= 'z'; k ) { //从'a' 到 'z' 遍历替换
chars[i] = k; //替换第i个字符
String newWord = String.valueOf(chars); //得到新的字符串
if (newWord.equals(endWord)) { //如果新的字符串值与endWord一致,返回当前长度 1
return path 1;
}
if (wordSet.contains(newWord) && !map.containsKey(newWord)) { //如果新单词在set中,但是没有访问过
map.put(newWord, path 1); //记录单词对应的路径长度
queue.offer(newWord);//加入队尾
}
}
}
}
return 0; //未找到
}
public static void main(String[] args) {
String beginWord = "hit";
String endWord = "cog";
String[] wordList = {"hot","dot","dog","lot","log","cog"};
List<String> wordList2=new ArrayList<String>(Arrays.asList(wordList));
Solution solution=new Solution();
System.out.println(solution.ladderLength(beginWord,endWord,wordList2));
}
}
四、复杂度分析
时间复杂度:O(N×C)。其中 N 为 wordList 的长度,C 为列表中单词的长度。
空间复杂度:O(N×C)。其中 N 为 wordList 的长度,C 为列表中单词的长度。