大数据开发岗面试复习30天冲刺 - 日积月累,每日五题【Day29】——数据倾斜2

2022-01-11 16:05:41 浏览数 (1)

theme: juejin

前言

大家好,我是程序员manor。作为一名大数据专业学生、爱好者,深知面试重要性,很多学生已经进入暑假模式,暑假也不能懈怠,正值金九银十的秋招 接下来我准备用30天时间,基于大数据开发岗面试中的高频面试题,以每日5题的形式,带你过一遍常见面试题及恰如其分的解答。 相信只要一路走来,日积月累,我们终会在最高处见。 以古人的话共勉:道阻且长,行则将至;行而不辍,未来可期!

本栏目大数据开发岗高频面试题主要出自大数据技术专栏的各个小专栏,由于个别笔记上传太早,排版杂乱,后面会进行原文美化、增加。

文章目录
  • theme: juejin
  • 前言
  • 面试题 01、 数据源中的数据分布不均匀,Spark需要频繁交互?
  • 面试题02、数据集中的不同Key由于分区方式,导致数据倾斜?
  • 面试题03、JOIN操作中,一个数据集中的数据分布不均匀,另一个数据集较小(主要)?
  • 面试题04、聚合操作中,数据集中的数据分布不均匀(主要)?
  • 面试题05、JOIN操作中,两个数据集都比较大,其中只有几个Key的数据分布不均匀?
  • 总结

停 不要往下滑了,

默默想5min,

看看这5道面试题你都会吗?

代码语言:javascript复制
面试题01、数据源中的数据分布不均匀,Spark需要频繁交互?
面试题02、数据集中的不同Key由于分区方式,导致数据倾斜?
面试题03、JOIN操作中,一个数据集中的数据分布不均匀,另一个数据集较小(主要)?
面试题04、聚合操作中,数据集中的数据分布不均匀(主要)?
面试题05、JOIN操作中,两个数据集都比较大,其中只有几个Key的数据分布不均匀?
以下答案仅供参考:

面试题 01、 数据源中的数据分布不均匀,Spark需要频繁交互?

解决方案:避免数据源的数据倾斜 实现原理:通过在Hive中对倾斜的数据进行预处理,以及在进行kafka数据分发时尽量进行平均分配。这种方案从根源上解决了数据倾斜,彻底避免了在Spark中执行shuffle类算子,那么肯定就不会有数据倾斜的问题了。 方案优点:实现起来简单便捷,效果还非常好,完全规避掉了数据倾斜,Spark作业的性能会大幅度提升。 方案缺点:治标不治本,Hive或者Kafka中还是会发生数据倾斜。 适用情况:在一些Java系统与Spark结合使用的项目中,会出现Java代码频繁调用Spark作业的场景,而且对Spark作业的执行性能要求很高,就比较适合使用这种方案。将数据倾斜提前到上游的Hive ETL,每天仅执行一次,只有那一次是比较慢的,而之后每次Java调用Spark作业时,执行速度都会很快,能够提供更好的用户体验。 总结:前台的Java系统和Spark有很频繁的交互,这个时候如果Spark能够在最短的时间内处理数据,往往会给前端有非常好的体验。这个时候可以将数据倾斜的问题抛给数据源端,在数据源端进行数据倾斜的处理。但是这种方案没有真正的处理数据倾斜问题。

面试题02、数据集中的不同Key由于分区方式,导致数据倾斜?

解决方案1:调整并行度 实现原理:增加shuffle read task的数量,可以让原本分配给一个task的多个key分配给多个task,从而让每个task处理比原来更少的数据。 方案优点:实现起来比较简单,可以有效缓解和减轻数据倾斜的影响。 方案缺点:只是缓解了数据倾斜而已,没有彻底根除问题,根据实践经验来看,其效果有限。 实践经验:该方案通常无法彻底解决数据倾斜,因为如果出现一些极端情况,比如某个key对应的数据量有100万,那么无论你的task数量增加到多少,都无法处理。

总结:调整并行度:适合于有大量key由于分区算法或者分区数的问题,将key进行了不均匀分区,可以通过调大或者调小分区数来试试是否有效

解决方案2: 缓解数据倾斜(自定义Partitioner) 适用场景:大量不同的Key被分配到了相同的Task造成该Task数据量过大。 解决方案:使用自定义的Partitioner实现类代替默认的HashPartitioner,尽量将所有不同的Key均匀分配到不同的Task中。 优势:不影响原有的并行度设计。如果改变并行度,后续Stage的并行度也会默认改变,可能会影响后续Stage。 劣势:适用场景有限,只能将不同Key分散开,对于同一Key对应数据集非常大的场景不适用。效果与调整并行度类似,只能缓解数据倾斜而不能完全消除数据倾斜。而且需要根据数据特点自定义专用的Partitioner,不够灵活。

面试题03、JOIN操作中,一个数据集中的数据分布不均匀,另一个数据集较小(主要)?

解决方案:Reduce side Join转变为Map side Join 方案适用场景:在对RDD使用join类操作,或者是在Spark SQL中使用join语句时,而且join操作中的一个RDD或表的数据量比较小(比如几百M),比较适用此方案。 方案实现原理:普通的join是会走shuffle过程的,而一旦shuffle,就相当于会将相同key的数据拉取到一个shuffle read task中再进行join,此时就是reduce join。但是如果一个RDD是比较小的,则可以采用广播小RDD全量数据 map算子来实现与join同样的效果,也就是map join,此时就不会发生shuffle操作,也就不会发生数据倾斜。 方案优点:对join操作导致的数据倾斜,效果非常好,因为根本就不会发生shuffle,也就根本不会发生数据倾斜。 方案缺点:适用场景较少,因为这个方案只适用于一个大表和一个小表的情况。

面试题04、聚合操作中,数据集中的数据分布不均匀(主要)?

解决方案:两阶段聚合(局部聚合 全局聚合) 适用场景:对RDD执行reduceByKey等聚合类shuffle算子或者在Spark SQL中使用group by语句进行分组聚合时,比较适用这种方案 实现原理:将原本相同的key通过附加随机前缀的方式,变成多个不同的key,就可以让原本被一个task处理的数据分散到多个task上去做局部聚合,进而解决单个task处理数据量过多的问题。接着去除掉随机前缀,再次进行全局聚合,就可以得到最终的结果。具体原理见下图。 优点:对于聚合类的shuffle操作导致的数据倾斜,效果是非常不错的。通常都可以解决掉数据倾斜,或者至少是大幅度缓解数据倾斜,将Spark作业的性能提升数倍以上。 缺点:仅仅适用于聚合类的shuffle操作,适用范围相对较窄。如果是join类的shuffle操作,还得用其他的解决方案将相同key的数据分拆处理

面试题05、JOIN操作中,两个数据集都比较大,其中只有几个Key的数据分布不均匀?

解决方案:为倾斜key增加随机前/后缀 适用场景:两张表都比较大,无法使用Map侧Join。其中一个RDD有少数几个Key的数据量过大,另外一个RDD的Key分布较为均匀。 解决方案:将有数据倾斜的RDD中倾斜Key对应的数据集单独抽取出来加上随机前缀,另外一个RDD每条数据分别与随机前缀结合形成新的RDD(笛卡尔积,相当于将其数据增到到原来的N倍,N即为随机前缀的总个数),然后将二者Join后去掉前缀。然后将不包含倾斜Key的剩余数据进行Join。最后将两次Join的结果集通过union合并,即可得到全部Join结果。 优势:相对于Map侧Join,更能适应大数据集的Join。如果资源充足,倾斜部分数据集与非倾斜部分数据集可并行进行,效率提升明显。且只针对倾斜部分的数据做数据扩展,增加的资源消耗有限。 劣势:如果倾斜Key非常多,则另一侧数据膨胀非常大,此方案不适用。而且此时对倾斜Key与非倾斜Key分开处理,需要扫描数据集两遍,增加了开销。 注意:具有倾斜Key的RDD数据集中,key的数量比较少

总结

今天我们复习了面试中常考的数据倾斜相关的五个问题,你做到心中有数了么? 其实做这个专栏我也有私心,就是希望借助每天写一篇面试题,督促自己学习,以免在面试期间尴尬!平时不流汗,面试多流泪!

对了,如果你的朋友也在准备面试,请将这个系列扔给他, 好了,今天就到这里,学废了的同学,记得在评论区留言:打卡。给同学们以激励。

0 人点赞