金融科技:建模工作环境

2022-01-29 19:26:03 浏览数 (1)

我们做数据建模工作,需要一个建模工作环境。

我基于公司申请的Ubuntu20.10系统的服务器搭建过可供多人使用Jupyter Hub建模平台,支持Python工作R工作Linux工作三种方式,同时,也可以做账户管理、权限管理、共享管理等。我也基于自己的本地机器,在Win系统上面搭建建模工作环境,支持Python工作R工作。顺便说一下,我在金融科技行业做数据科学工作,Python语言和R语言,我都会使用。我从不做语言的好坏选择,只看语言是否有利于我解决问题。

在这里,我分享下如何快速而高效地在本地机构建建模环境?

01

1 软件下载和安装

1.1 安装Anaconda软件

软件下载链接:

https://www.anaconda.com/products/individual

下载到本地后,逐步安装即可。

1.2 安装R软件

软件下载链接:

https://cran.r-project.org/bin/windows/base/old/ 选择一个版本安装就可以了,你可以安装R4.0.0

下载到本地后,逐步安装即可。

1.3 安装PyCharm软件

软件下载链接: https://www.jetbrains.com/zh-cn/pycharm/download/#section=windows 你可以下载一个提供30天试用期的专业版软件。

02

2 Jupyter Lab作为建模环境

2.1 添加R核

首先,启动Anaconda Prompt,进入R的安装路径下的bin文件夹,输入R,进入到R控制台 其次,执行如下安装命令

代码语言:javascript复制
install.packages(c('repr', 'IRdisplay', 'evaluate', 'crayon', 'pbdZMQ', 'devtools',
'uuid', 'digest'))
devtools::install_github('IRkernel/IRkernel')

最后,配置R核

代码语言:javascript复制
IRkernel::installspec(user = FALSE)

2.2 使用PyCharm创建数据项目

第一步:打开PyCharm软件 第二步:进入File-New Project可以创建数据项目,命名建议以任务为导向,例如Prod_App_Credit_Score_Model,如下图所示:

Python解释器的配置,你可以在上图中第2个红色方框里面完成,找到你已经安装的Anaconda软件下的python.exe解释器。

2.3 启动Jupyter Lab

在数据项目Prod_App_Credit_Score_Model,启动Jupyter Lab

启动方式,如下图所示。

执行命令

代码语言:javascript复制
jupyter-lab

成功启动后,如下图所示。

这个时候,就可以使用Python工作方式或者R工作方式,针对数据项目开展数据建模工作了。

03

3 一些测试用例

3.1 Python工作环境测试用例

在Jupyter Lab下,打开Python的notebook,做如下测试用例。

1 查看已经安装的Python库

执行如下命令

代码语言:javascript复制
!pip list

部分结果如下图所示:

2 评分模型的Python库

写入如下代码

代码语言:javascript复制
import toad as td
import scorecardpy as sc

print(td.__version__)
print(sc.__version__)

结果如下图所示:

3.2 R工作环境测试用例

在Jupyter Lab下,打开R的notebook,做如下测试用例。

1 查看已经安装的R包

写入如下代码

代码语言:javascript复制
library(tidyverse)
installed.packages() %>%
    as.data.frame() %>%
    dplyr::select(Package, Version)

部分结果如下图所示:

3 评分模型的R包

写入如下代码

代码语言:javascript复制
if(!require(scorecard)){  
    install.packages("scorecard")
    require(scorecard)
}
# 查看R包的帮助信息
help(package="scorecard")

结果如下图所示:

俗话说,“工欲善其事,必先利其器”。

搭建一个高效建模工作环境,有利于我们开展数据建模工作。

0 人点赞