This short introduction uses Keras to:
- Build a neural network that classifies images.
- Train this neural network.
- And, finally, evaluate the accuracy of the model.
import tensorflow as tf
Load and prepare the MNIST dataset. Convert the samples from integers to floating-point numbers:
代码语言:javascript复制mnist = tf.keras.datasets.mnist
(x_train, y_train), (x_test, y_test) = mnist.load_data()
x_train, x_test = x_train / 255.0, x_test / 255.0
Build the tf.keras.Sequential model by stacking layers. Choose an optimizer and loss function for training:
代码语言:javascript复制model = tf.keras.models.Sequential([
tf.keras.layers.Flatten(input_shape=(28, 28)),
tf.keras.layers.Dense(128, activation='relu'),
tf.keras.layers.Dropout(0.2),
tf.keras.layers.Dense(10)
])
For each example the model returns a vector of "logits" or "log-odds" scores, one for each class.
代码语言:javascript复制predictions = model(x_train[:1]).numpy()
predictions
The tf.nn.softmax function converts these logits to "probabilities" for each class:
代码语言:javascript复制tf.nn.softmax(predictions).numpy()
Note: It is possible to bake this tf.nn.softmax in as the activation function for the last layer of the network. While this can make the model output more directly interpretable, this approach is discouraged as it's impossible to provide an exact and numerically stable loss calculation for all models when using a softmax output.
The losses.SparseCategoricalCrossentropy loss takes a vector of logits and a True index and returns a scalar loss for each example.
代码语言:javascript复制loss_fn = tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True)
This loss is equal to the negative log probability of the true class: It is zero if the model is sure of the correct class.
This untrained model gives probabilities close to random (1/10 for each class), so the initial loss should be close to -tf.math.log(1/10) ~= 2.3
代码语言:javascript复制loss_fn(y_train[:1], predictions).numpy()
代码语言:javascript复制model.compile(optimizer='adam',
loss=loss_fn,
metrics=['accuracy'])
The Model.fit method adjusts the model parameters to minimize the loss:
代码语言:javascript复制model.fit(x_train, y_train, epochs=5)
The Model.evaluate method checks the models performance, usually on a "Validation-set" or "Test-set".
代码语言:javascript复制model.evaluate(x_test, y_test, verbose=2)
The image classifier is now trained to ~98% accuracy on this dataset. To learn more, read the TensorFlow tutorials.
If you want your model to return a probability, you can wrap the trained model, and attach the softmax to it:
代码语言:javascript复制probability_model = tf.keras.Sequential([
model,
tf.keras.layers.Softmax()
])
代码语言:javascript复制probability_model(x_test[:5])
代码链接: https://codechina.csdn.net/csdn_codechina/enterprise_technology/-/blob/master/CV_Classification/TensorFlow 2 quickstart for beginners.ipynb