深入理解Linux内核之进程睡眠(下)

2021-08-06 16:11:38 浏览数 (1)

4.用户态睡眠

以sleep为例来说明任务在用户态是如何睡眠的。

首先我们通过strace工具来看下其调用的系统调用:

代码语言:javascript复制
$ strace sleep 1

...
close(3)                                = 0
clock_nanosleep(CLOCK_REALTIME, 0, {tv_sec=1, tv_nsec=0}, NULL) = 0
close(1)                                = 0
...

可以发现sleep主要调用clock_nanosleep系统调用来进行睡眠(也就是说用户态任务睡眠需要调用系统调用陷入内核)。

下面我们来研究下clock_nanosleep的实现(这里集中到睡眠的实现,先忽略掉定时器等诸多的技术细节):

代码语言:javascript复制
kernel/time/posix-timers.c

SYSCALL_DEFINE4(clock_nanosleep
->const struct k_clock *kc = clockid_to_kclock(which_clock);  //根据时钟类型得到内核时钟结构
    return kc->nsleep(which_clock, flags, &t); //调用内核时钟结构的nsleep回调

我们传递过来的时钟类型为CLOCK_REALTIME,则调用链为:

代码语言:javascript复制
kc->nsleep(CLOCK_REALTIME, flags, &t)
->clock_realtime.nsleep
    ->common_nsleep
        ->hrtimer_nanosleep  //kernel/time/hrtimer.c
            ->hrtimer_init_sleeper_on_stack
                    ->__hrtimer_init_sleeper
                        ->__hrtimer_init(&sl->timer, clock_id, mode); //初始化高精度定时器
                            sl->timer.function = hrtimer_wakeup;  //设置超时回调函数
                            sl->task = current;.//设置超时时要唤醒的任务
                     ->do_nanosleep  //睡眠操作

可以看到,睡眠函数最终调用到hrtimer_nanosleep,它调用了两个主要函数:__hrtimer_init_sleeper和do_nanosleep,前者主要设置高精度定时器,后者就是真正的睡眠,主要来看下 do_nanosleep:

代码语言:javascript复制
 kernel/time/hrtimer.c
 do_nanosleep
 ->
         do {
                 set_current_state(TASK_INTERRUPTIBLE);  //设置可中断的睡眠状态
                 hrtimer_sleeper_start_expires(t, mode); //开启高精度定时器

                 if (likely(t->task))
                         freezable_schedule(); //主动调度
                   

                 hrtimer_cancel(&t->timer);
                 mode = HRTIMER_MODE_ABS;

         } while (t->task && !signal_pending(current));  //是否记录的有任务且没有挂起的信号

         __set_current_state(TASK_RUNNING);  //设置为可运行状态


do_nanosleep函数是睡眠的核心实现:首先设置任务的状态为可中断的睡眠状态,然后开启了之前设置的高精度定时器,随即调用freezable_schedule进行真正的睡眠。

来看下freezable_schedule:

代码语言:javascript复制
//include/linux/freezer.h
freezable_schedule
->schedule()
    ->__schedule(false); 
 

可以看到最终调用主调度器__schedule进行主动调度。

当任务睡眠完成,定时器超时,会调用之前在__hrtimer_init_sleeper设置的超时回调函数hrtimer_wakeup将睡眠的任务唤醒(关于进程唤醒在这里就不在赘述,在后面的进程唤醒专题文章在进行详细解读),然后就可以再次获得处理器的使用权了。

总结:处于用户态的任务,如果想要睡眠一段时间必须向内核请求服务(如调用clock_nanosleep系统调用),内核中会设置一个高精度定时器,来记录要睡眠的任务,然后设置任务状态为可中断的睡眠状态,紧接着发生主动调度,这样任务就发生睡眠了。

5.内核态睡眠

当任务处于内核态时,有时候也需要睡眠一段时间,不像任务处于用户态需要发生系统调用来请求内核进行睡眠,在内核态可以直接调用睡眠函数。当然,内核态中,睡眠有两种场景:一种是睡眠特定的时间的延迟操作(唤醒条件为超时),一种是等待特定条件满足(如IO读写完成,可睡眠的锁被释放等)。

下面分别以msleep和mutex锁为例讲解内核态睡眠:

5.1 msleep

msleep做ms级别的睡眠延迟。

代码语言:javascript复制
//kernel/time/timer.c
void msleep(unsigned int msecs)
{
        unsigned long timeout = msecs_to_jiffies(msecs)   1;  //ms时间转换为jiffies

        while (timeout)
                timeout = schedule_timeout_uninterruptible(timeout);  //不可中断睡眠
}

下面看下schedule_timeout_uninterruptible:

这里涉及到一个重要数据结构process_timer

代码语言:javascript复制
struct process_timer {
        struct timer_list timer;  //定时器结构
        struct task_struct *task; //定时器到期要唤醒的任务
};

代码语言:javascript复制
schedule_timeout_uninterruptible
->  __set_current_state(TASK_UNINTERRUPTIBLE);  //设置任务状态为不可中断睡眠
  return schedule_timeout(timeout); 
    ->expire = timeout   jiffies;   //计算到期时的jiffies值
        timer.task = current; //记录定时器到期要唤醒的任务 为当前任务
        timer_setup_on_stack(&timer.timer, process_timeout, 0);  //初始化定时器   超时回调为process_timeout
        __mod_timer(&timer.timer, expire, MOD_TIMER_NOTPENDING); //添加定时器
        schedule();  //主动调度

再看下超时回调为process_timeout:

代码语言:javascript复制
process_timeout
 ->struct process_timer *timeout = from_timer(timeout, t, timer); //通过定时器结构获得process_timer
    wake_up_process(timeout->task); //唤醒其管理的任务

可以看到,msleep实现睡眠也是通过定时器,首先设置当前任务状态为不可中断睡眠,然后设置定时器超时时间为传递的ms级延迟转换的jiffies,超时回调为process_timeout,然后将定时器添加到系统中,最后调用schedule发起主动调度,当定时器超时的时候调用process_timeout来唤醒睡眠的任务。

5.2 mutex锁

mutex锁是可睡眠锁的一种,当申请mutex锁时发现其他内核路径已经持有这把锁,当前任务就会睡眠等待在这把锁上。

下面我们来看他的实现,主要看睡眠的部分:

代码语言:javascript复制
kernel/locking/mutex.c

mutex_lock
->__mutex_lock_slowpath
    ->__mutex_lock(lock, TASK_UNINTERRUPTIBLE, 0, NULL, _RET_IP_)  //睡眠的状态为不可中断睡眠
        ->__mutex_lock_common
            ->
            ...
            waiter.task = current;  //记录需要唤醒的任务为当前任务
            set_current_state(state);  //设置睡眠状态
            for (;;) {
                
                     if (__mutex_trylock(lock))  //尝试获得锁
                         goto acquired;

                    schedule_preempt_disabled(); 
                        ->schedule();  //主动调度

            }
       acquired:
            __set_current_state(TASK_RUNNING);//设置状态为可运行状态

可以看到mutex锁实现睡眠套路和之前是一样的:申请mutex锁的时候,如果其他内核路径已经持有这把锁,首先通过mutex锁的相关结构来记录下当前任务,然后设置任务状态为不可中断睡眠,接着在一个for循环中调用schedule_preempt_disabled发生主动调度,于是当前任务就睡眠在这把锁上。当其他内核路径释放了这把锁,就会唤醒等待在这把锁上的任务,当前任务就获得了这把锁,然后进入锁的临界区,唤醒操作就完成了(关于唤醒的技术细节,后面的唤醒专题会详细讲解)。

6.总结

进程睡眠按照应用场景可以分为:延迟睡眠和等待某些特定条件而睡眠,实际上都可以归于等待某些特定条件而睡眠,因为延迟特定时间也可以作为特定条件。进程睡眠按照进程所处的特权级别可以分为:用户态进程睡眠和内核态进程睡眠,用户态进程睡眠需要进程通过系统调用陷入内核来发起睡眠请求。对于进程睡眠,内核主要需要做三大步操作:1.设置任务状态为睡眠状态 2.记录睡眠的任务 3.发起主动调度。这三大步操作都是非常有必要,第一步设置睡眠状态为后面调用主调度器做必要的标识准备;第二步记录下睡眠的任务是为了以后唤醒任务来准备的;第三步是睡眠的主体部分,这里会将睡眠的任务从运行队列中踢出,选择下一个任务运行。

0 人点赞