LabVIEW图像灰度测量(基础篇—7)

2021-08-10 10:51:52 浏览数 (1)

像素灰度是图像最为典型的特征之一,基于图像像素灰度能衍生更多的图像特征,包括图像的直方图、线灰度分布曲线、图像线灰度均值、ROl边界灰度曲线、灰度定量描述以及图像结构相似度等,如下图所示:

拓展学习:https://cloud.tencent.com/developer/article/1837401

在机器视觉领域,图像灰度特征可用于实现目标的存在性检测和基于灰度的模式匹配。在进行目标的存在性检测时,机器视觉系统会不断计算并监测指定ROI范围内的图像灰度量化指标是否在设定的范围内,若指标超限,则认为所检测的目标不存在。基于灰度的模式匹配,可以计算图像中的灰度或梯度,并从中寻找可与模板图像匹配的特征。

在牙线生产过程中,常会出现牙线未安装或牙线断裂的情况。为了能剔除此类次品,可监测安装牙线区域的图像灰度均值及标准差。若灰度均值和表征像素灰度分布的标准差超出指定的范围,就说明被检测的产品存在质量问题。

通过一个基于图像灰度特征进行牙线检测的实例程序,了解其使用方法。

该实例使用了字符串状态机结构,包括程序初始化、基于标准样本设置ROI、更新测量坐标系、产品检

0 人点赞