白话Elasticsearch23-深度探秘搜索技术之通过ngram分词机制实现index-time搜索推荐

2021-08-17 14:48:29 浏览数 (1)

文章目录

  • 概述
  • 官网
  • 什么是ngram
  • 什么是edge ngram
  • ngram和index-time搜索推荐原理
  • 例子

概述

继续跟中华石杉老师学习ES,第23篇

课程地址: https://www.roncoo.com/view/55


官网

NGram Tokenizer: https://www.elastic.co/guide/en/elasticsearch/reference/current/analysis-ngram-tokenizer.html

NGram Token Filter: https://www.elastic.co/guide/en/elasticsearch/reference/current/analysis-ngram-tokenfilter.html


Edge NGram Tokenizer: https://www.elastic.co/guide/en/elasticsearch/reference/current/analysis-edgengram-tokenizer.html

Edge NGram Token Filter: https://www.elastic.co/guide/en/elasticsearch/reference/current/analysis-edgengram-tokenfilter.html


什么是ngram

什么是ngram

假设有个单词quick,5种长度下的ngram

代码语言:javascript复制
ngram length=1,会被拆成 q u i c k
ngram length=2,会被拆成 qu ui ic ck
ngram length=3,会被拆成 qui uic ick
ngram length=4,会被拆成 quic uick
ngram length=5,会被拆成 quick

其中任意一个被拆分的部分 就被称为ngram 。


什么是edge ngram

quick,anchor首字母后进行ngram

代码语言:javascript复制
q
qu
qui
quic
quick

上述拆分方式就被称为edge ngram


使用edge ngram将每个单词都进行进一步的分词切分,用切分后的ngram来实现前缀搜索推荐功能

举个例子 两个doc doc1 hello world doc2 hello we

使用edge ngram拆分

h he hel hell hello -------> 可以匹配 doc1,doc2

w -------> 可以匹配 doc1,doc2 wo wor worl world e ---------> 可以匹配 doc2

使用hello w去搜索

hello --> hello,doc1 w --> w,doc1

doc1中hello和w,而且position也匹配,所以,ok,doc1返回,hello world


ngram和index-time搜索推荐原理

搜索的时候,不用再根据一个前缀,然后扫描整个倒排索引了,而是简单的拿前缀去倒排索引中匹配即可,如果匹配上了,那么就好了,就和match query全文检索一样


例子

代码语言:javascript复制
PUT /my_index
{
    "settings": {
        "analysis": {
            "filter": {
                "autocomplete_filter": { 
                    "type":     "edge_ngram",
                    "min_gram": 1,
                    "max_gram": 20
                }
            },
            "analyzer": {
                "autocomplete": {
                    "type":      "custom",
                    "tokenizer": "standard",
                    "filter": [
                        "lowercase",
                        "autocomplete_filter" 
                    ]
                }
            }
        }
    }
}

helloworld 设置

代码语言:javascript复制
min ngram = 1
max ngram = 3

使用edge_ngram ,则会被拆分为一下 ,

代码语言:javascript复制
h
he
hel

知识点: autocomplete

https://www.elastic.co/guide/en/elasticsearch/reference/current/search-analyzer.html


代码语言:javascript复制
GET /my_index/_analyze
{
  "analyzer": "autocomplete",
  "text": "helll world"
}

设置mapping , 查询的时候还是使用standard

代码语言:javascript复制
PUT /my_index/_mapping/my_type
{
  "properties": {
      "title": {
          "type":     "text",
          "analyzer": "autocomplete",
          "search_analyzer": "standard"
      }
  }
}

造数据

代码语言:javascript复制
PUT /my_index/my_type/1
{
  "content":"hello Jack"
}


PUT /my_index/my_type/2
{
  "content":"hello John"
}




PUT /my_index/my_type/3
{
  "content":"hello Jose"
}

查询

代码语言:javascript复制
GET /my_index/my_type/_search 
{
  "query": {
    "match": {
      "content": "hello J"
    }
  }
}

返回:

代码语言:javascript复制
{
  "took": 7,
  "timed_out": false,
  "_shards": {
    "total": 5,
    "successful": 5,
    "skipped": 0,
    "failed": 0
  },
  "hits": {
    "total": 3,
    "max_score": 0.2876821,
    "hits": [
      {
        "_index": "my_index",
        "_type": "my_type",
        "_id": "2",
        "_score": 0.2876821,
        "_source": {
          "content": "hello John"
        }
      },
      {
        "_index": "my_index",
        "_type": "my_type",
        "_id": "1",
        "_score": 0.2876821,
        "_source": {
          "content": "hello Jack"
        }
      },
      {
        "_index": "my_index",
        "_type": "my_type",
        "_id": "3",
        "_score": 0.2876821,
        "_source": {
          "content": "hello Jose"
        }
      }
    ]
  }
}
  • 如果用match,只有hello的也会出来,全文检索,只是分数比较低
  • 推荐使用match_phrase,要求每个term都有,而且position刚好靠着1位,符合我们的期望的

0 人点赞