白话Elasticsearch16-深度探秘搜索技术之使用原生cross-fiedls技术解决搜索弊端

2021-08-17 16:54:19 浏览数 (1)

文章目录

  • 概述
  • 例子

概述

继续跟中华石杉老师学习ES,第15篇

课程地址: https://www.roncoo.com/view/55

白话Elasticsearch14-基于multi_match 使用most_fields策略进行cross-fields search弊端

白话Elasticsearch15-使用copy_to定制组合field解决cross-fields搜索弊端

承接上两篇, 接下来看下如何使用原生cross-fiels技术解决搜索的弊端


例子

使用DSL如下,可以解决 "operator": "and",

代码语言:javascript复制
GET /forum/article/_search
{
  "query": {
    "multi_match": {
      "query": "Peter Smith",
      "type": "cross_fields", 
      "operator": "and",
      "fields": ["author_first_name", "author_last_name"]
    }
  }
}

返回结果:

代码语言:javascript复制
{
  "took": 3,
  "timed_out": false,
  "_shards": {
    "total": 1,
    "successful": 1,
    "skipped": 0,
    "failed": 0
  },
  "hits": {
    "total": 2,
    "max_score": 2.3258216,
    "hits": [
      {
        "_index": "forum",
        "_type": "article",
        "_id": "1",
        "_score": 2.3258216,
        "_source": {
          "articleID": "XHDK-A-1293-#fJ3",
          "userID": 1,
          "hidden": false,
          "postDate": "2017-01-01",
          "tag": [
            "java",
            "hadoop"
          ],
          "tag_cnt": 2,
          "view_cnt": 30,
          "title": "this is java and elasticsearch blog",
          "content": "i like to write best elasticsearch article",
          "sub_title": "learning more courses",
          "author_first_name": "Peter",
          "author_last_name": "Smith",
          "new_author_last_name": "Smith",
          "new_author_first_name": "Peter"
        }
      },
      {
        "_index": "forum",
        "_type": "article",
        "_id": "5",
        "_score": 1.7770995,
        "_source": {
          "articleID": "DHJK-B-1395-#Ky5",
          "userID": 3,
          "hidden": false,
          "postDate": "2019-05-01",
          "tag": [
            "elasticsearch"
          ],
          "tag_cnt": 1,
          "view_cnt": 10,
          "title": "this is spark blog",
          "content": "spark is best big data solution based on scala ,an programming language similar to java",
          "sub_title": "haha, hello world",
          "author_first_name": "Tonny",
          "author_last_name": "Peter Smith",
          "new_author_last_name": "Peter Smith",
          "new_author_first_name": "Tonny"
        }
      }
    ]
  }
}

那是如何解决cromss fields的弊端的呢? 我们来分析下

  • 问题1:只是找到尽可能多的field匹配的doc,而不是某个field完全匹配的doc 答: 解决,要求每个term都必须在任何一个field中出现 Peter,Smith 要求Peter必须在author_first_name或author_last_name中出现 要求Smith必须在author_first_name或author_last_name中出现 Peter Smith可能是横跨在多个field中的,所以必须要求每个term都在某个field中出现,组合起来才能组成我们想要的标识,完整的人名 原来most_fiels,可能像Smith Williams也可能会出现,因为most_fields要求只是任何一个field匹配了就可以,匹配的field越多,分数越高

  • 问题2:most_fields,没办法用minimum_should_match去掉长尾数据,就是匹配的特别少的结果 --> 解决,既然每个term都要求出现,长尾肯定被去除掉了

答:java hadoop spark --> 这3个term都必须在任何一个field出现了

比如有的document,只有一个field中包含一个java,那就被干掉了,作为长尾就没了


  • 问题3:TF/IDF算法,比如Peter Smith和Smith Williams,搜索Peter Smith的时候,由于first_name中很少有Smith的,所以query在所有document中的频率很低,得到的分数很高,可能Smith Williams反而会排在Peter Smith前面

答:计算IDF的时候,将每个query在每个field中的IDF都取出来,取最小值,就不会出现极端情况下的极大值了

Peter Smith

Peter

Smith

Smith,在author_first_name这个field中,在所有doc的这个Field中,出现的频率很低,导致IDF分数很高;Smith在所有doc的author_last_name field中的频率算出一个IDF分数,因为一般来说last_name中的Smith频率都较高,所以IDF分数是正常的,不会太高;然后对于Smith来说,会取两个IDF分数中,较小的那个分数。就不会出现IDF分过高的情况。

0 人点赞