概念
基数排序(radix sort)属于“分配式排序”(distribution sort),又称“桶子法”(bucket sort)或bin sort,顾名思义,它是透过键值的部份资讯,将要排序的元素分配至某些“桶”中,藉以达到排序的作用,基数排序法是属于稳定性的排序,其时间复杂度为O (nlog®m),其中r为所采取的基数,而m为堆数,在某些时候,基数排序法的效率高于其它的稳定性排序法。
基数排序是一种很特别的排序方法,它不基于比较和移动进行排序,而基于关键字各位的大小进行排序。基数排序是一种借助多关键字排序的思想对单逻辑关键字进行排序的方法。
实现方法
最高位优先(Most Significant Digit first)法,简称MSD法:先按k1排序分组,同一组中记录,关键码k1相等,再对各组按k2排序分成子组,之后,对后面的关键码继续这样的排序分组,直到按最次位关键码kd对各子组排序后。再将各组连接起来,便得到一个有序序列。
最低位优先(Least Significant Digit first)法,简称LSD法:先从kd开始排序,再对kd-1进行排序,依次重复,直到对k1排序后便得到一个有序序列。
(1)假设有欲排数据序列如下所示:
73 22 93 43 55 14 28 65 39 81
首先,根据每个数据个位数的数值,在遍历数据时将它们各自分配到编号0至9的桶(个位数值与桶号一一对应)中。
分配结果(逻辑想象)如下图所示:
分配结束后。接下来将所有桶中(由顶至底)所盛数据按照桶号由小到大依次重新收集串起来,得到如下仍然无序的数据序列:
81 22 73 93 43 14 55 65 28 39
接着,再进行一次分配,这次根据每个数据十位数的数值来分配(原理同上),分配结果(逻辑想象)如下图所示:
分配结束后。接下来再将所有桶中(由顶至底)所盛的数据(原理同上)依次重新再收集串接起来,得到如下的数据序列:
14 22 28 39 43 55 65 73 81 93
算法实现
代码语言:javascript复制/*
* 获取数组a中最大值
*
* 参数说明:
* a -- 数组
* n -- 数组长度
*/
int get_max(int a[], int n)
{
int i, max;
max = a[0];
for (i = 1; i < n; i )
if (a[i] > max)
max = a[i];
return max;
}
/*
* 对数组按照"某个位数"进行排序(桶排序)
* 参数说明:
* a -- 数组
* n -- 数组长度
* exp -- 指数。对数组a按照该指数进行排序。
* 例如,对于数组a={50, 3, 542, 745, 2014, 154, 63, 616};
* (01) 当exp=1表示按照"个位"对数组a进行排序
* (02) 当exp=10表示按照"十位"对数组a进行排序
* (03) 当exp=100表示按照"百位"对数组a进行排序
*/
void count_sort(int a[], int n, int exp)
{
int output[n]; // 存储"被排序数据"的临时数组
int i, buckets[10] = {0};
// 将数据出现的次数存储在buckets[]中
for (i = 0; i < n; i )
buckets[ (a[i]/exp) ] ;
// 更改buckets[i]。目的是让更改后的buckets[i]的值,是该数据在output[]中的位置。
for (i = 1; i < 10; i )
buckets[i] = buckets[i - 1];
// 将数据存储到临时数组output[]中
for (i = n - 1; i >= 0; i--)
{
output[buckets[ (a[i]/exp) ] - 1] = a[i];
buckets[ (a[i]/exp) ]--;
}
// 将排序好的数据赋值给a[]
for (i = 0; i < n; i )
a[i] = output[i];
}
/*
* 参数说明:
* a -- 数组
* n -- 数组长度
*/
void radix_sort(int a[], int n)
{
int exp; // 指数。当对数组按各位进行排序时,exp=1;按十位进行排序时,exp=10;...
int max = get_max(a, n); // 数组a中的最大值
// 从个位开始,对数组a按"指数"进行排序
for (exp = 1; max/exp > 0; exp *= 10)
count_sort(a, n, exp);
}
点一点在看支持一下。