《搜索和推荐中的深度匹配》——2.4 推荐中的潜在空间模型

2021-09-10 11:48:08 浏览数 (1)

接下来,我们简要介绍在潜在空间中执行匹配的代表性推荐方法,包括偏置矩阵分解 (BMF)【1】、Factored Item Similarity Model (FISM) 【2】和分解机 (FM)【3】。

参阅 《深度推荐模型——FM》

2.4.1 有偏矩阵分解

偏置矩阵分解 (BMF) 是一种用于预测用户评分的模型【1】,即将推荐形式化为回归任务。它是在 Netflix Challenge 期间开发的,由于其简单性和有效性而迅速流行起来。匹配模型可以表述为:

参阅《深入理解Spark ML:基于ALS矩阵分解的协同过滤算法与源码分析》

2.4.2 因子项相似度模型

Factored Item Similarity Model (FISM) 【2】采用基于项目的协同过滤假设,即用户会更喜欢与他们目前选择的项目相似的项目。为此,FISM 使用用户选择的项目来代表用户,并将组合项目投影到潜在空间中。 FISM 的模型公式为:

这迫使正(观察到的)实例的分数大于负(未观察到的)实例的分数,边距为 1。另一种成对损失,贝叶斯个性化排名 (BPR)【6】损失也被广泛使用:

其中 σ(·) 表示 sigmoid 函数,它将分数的差异转换为介于 0 和 1 之间的概率值,因此损失具有概率解释。两种损失之间的主要区别在于,BPR 将正例和负例之间的差异强制尽可能大,而没有明确定义余量。这两个成对损失都可以看作是 AUC 指标的替代品,该指标衡量模型正确排序了多少对项目

2.4.3 分解机

Factorization Machine (FM) 【3】是作为推荐的通用模型而开发的。除了用户和物品之间的交互信息,FM还结合了用户和物品的边信息,例如用户资料(例如年龄、性别等)、物品属性(例如类别、标签等)和上下文(例如,时间、地点等)。 FM 的输入是一个特征向量 x = [x1, x2, … . . , xn] 可以包含用于表示匹配函数的任何特征,如上所述。因此,FM 将匹配问题视为监督学习问题。它将特征投影到潜在空间中,对它们与内积的相互作用进行建模:

引文

【1】Koren, Y., R. Bell, and C. Volinsky (2009). “Matrix factorization tech- niques for recommender systems”. Computer. 42(8): 30–37. 【2】Kabbur, S., X. Ning, and G. Karypis (2013). “FISM: Factored item similarity models for top-N recommender systems”. In: Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. KDD ’13. Chicago, IL, USA: ACM. 659–667. 【3】Rendle, S. (2010). “Factorization machines”. In: Proceedings of the 2010 IEEE International Conference on Data Mining. ICDM ’10. Washington, DC, USA: IEEE Computer Society. 995–1000. 【4】He, X., H. Zhang, M.-Y. Kan, and T.-S. Chua (2016b). “Fast matrix factorization for online recommendation with implicit feedback”. In: Proceedings of the 39th International ACM SIGIR Conference on Research and Development in Information Retrieval. SIGIR ’16. Pisa, Italy: ACM. 549–558. 【5】Koren, Y., R. Bell, and C. Volinsky (2009). “Matrix factorization tech- niques for recommender systems”. Computer. 42(8): 30–37. 【6】Rendle, S., C. Freudenthaler, Z. Gantner, and L. Schmidt-Thieme (2009). “BPR: Bayesian personalized ranking from implicit feedback”. In: Proceedings of the Twenty-Fifth Conference on Uncertainty in Artificial Intelligence. UAI ’09. Montreal, Quebec, Canada: AUAI Press. 452–461. url: http://dl.acm.org/citation.cfm?id=1795114.1 795167. 【7】Koren, Y. (2008). “Factorization meets the neighborhood: A multi- faceted collaborative filtering model”. In: Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. KDD ’08. Las Vegas, NV, USA: ACM. 426–434. 【8】Rendle, S., C. Freudenthaler, and L. Schmidt-Thieme (2010). “Factoriz- ing personalized Markov chains for next-basket recommendation”. In: Proceedings of the 19th International Conference on World Wide Web. WWW ’10. Raleigh, NC, USA: ACM. 811–820.

0 人点赞