1、基于MXNET框架的线性回归从零实现例子
下面博客是基于MXNET框架下的线性回归从零实现,以一个简单的房屋价格预测作为例子来解释线性回归的基本要素。这个应用的目标是预测一栋房子的售出价格(元)。
为了简单起见,这里我们假设价格只取决于房屋状况的两个因素,即面积(平方米)和房龄(年)。接下来我们希望探索价格与这两个因素的具体关系:
设房屋的面积为x1,房龄为x2,售出价格为y。我们需要建立基于输入x1和x2来计算输出yy的表达式,也就是模型(model)。顾名思义,线性回归假设输出与各个输入之间是线性关系:y'=x1w1 x2w2 b
其中w1和w2是权重(weight),b是偏差(bias),且均为标量。它们是线性回归模型的参数(parameter)。模型输出y'是线性回归对真实价格y的预测或估计。我们通常允许它们之间有一定误差。
2、实现部分(各个部分见代码)
2.1、生成数据集(随机生成批量样本数据与高斯噪声)
2.2、读取数据集(遍历数据集并不断读取小批量数据样本)
2.3、初始化模型参数(均值为0、标准差为0.01的正态随机数,偏差则初始化成0)
2.4、定义模型
2.5、定义损失函数(平方损失函数)
2.6、定义优化算法(sgd小批量随机梯度下降算法)
2.7、训练模型(过调用反向函数backward
计算小批量随机梯度,并调用优化算法sgd
迭代模型参数)
3、代码实现
Python
代码语言:javascript复制 1 from IPython import display
2 from matplotlib import pyplot as plt
3 from mxnet import autograd, nd
4 import random
5
6
7 # 生成数据集
8 num_inputs = 2
9 num_examples = 1000
10
11 true_w = [2, -3.4]
12 true_b = 4.2
13 features = nd.random.normal(scale=1, shape=(num_examples, num_inputs))
14
15 labels = true_w[0] * features[:, 0] true_w[1] * features[:, 1] true_b
16 labels = nd.random.normal(scale=0.01, shape=labels.shape)
17
18 print(features[0], labels[0])
19
20
21 def use_svg_display():
22 # 用矢量图显示
23 display.set_matplotlib_formats('svg')
24
25
26 def set_figsize(figsize=(3.5, 2.5)):
27 use_svg_display()
28 # 设置图的尺寸
29 plt.rcParams['figure.figsize'] = figsize
30
31
32 set_figsize()
33 plt.scatter(features[:, 1].asnumpy(), labels.asnumpy(), 1)
34
35 # plt.scatter(features[:, 0].asnumpy(), labels.asnumpy(), 1)
36 # help(plt.scatter)
37
38
39 # 读取数据集
40 def data_iter(batch_size, features, labels):
41 num_examples = len(features)
42 indices = list(range(num_examples))
43 random.shuffle(indices)
44 for i in range(0, num_examples, batch_size):
45 j = nd.array(indices[i: min(i batch_size, num_examples)])
46 yield features.take(j), labels.take(j)
47
48
49 batch_size = 10
50
51 for X, y in data_iter(batch_size, features, labels):
52 print(X, y)
53 break
54
55
56 # 初始化模型参数
57 w = nd.random.normal(scale=0.01, shape=(num_inputs, 1))
58 b = nd.zeros(shape=(1,))
59 # 之后的模型训练中,需要对这些参数求梯度来迭代参数的值,因此我们需要创建它们的梯度
60 w.attach_grad()
61 b.attach_grad()
62
63
64 # 定义模型
65 def linreg(X, w, b):
66 return nd.dot(X, w) b
67
68
69 # 定义平方损失函数
70 def squared_loss(y_hat, y):
71 return (y_hat - y.reshape(y_hat.shape)) ** 2 / 2
72
73
74 #定义优化算法
75 def sgd(params, lr , batch_size):
76 for param in params:
77 param[:] = param - lr * param.grad / batch_size
78
79
80 #训练模型
81 lr = 0.03
82 num_epochs = 3
83 net = linreg
84 loss = squared_loss
85
86 for epoch in range(num_epochs):
87 for X, y in data_iter(batch_size, features, labels):
88 with autograd.record():
89 l = loss(net(X, w, b), y)
90 l.backward()
91 sgd([w, b], lr, batch_size)
92 train_l = loss(net(features, w, b), labels)
93 print('epoch %d, loss %f' % (epoch 1, train_l.mean().asnumpy()))
94
95
96
97 plt.show()