完整代码及注释如下:
代码语言:javascript复制# -*- coding: utf-8 -*-
import os
import cv2
import numpy as np
from sklearn.cross_validation import train_test_split
from sklearn.metrics import confusion_matrix, classification_report
#----------------------------------------------------------------------------------
# 第一步 切分训练集和测试集
#----------------------------------------------------------------------------------
X = [] #定义图像名称
Y = [] #定义图像分类类标
Z = [] #定义图像像素
for i in range(0, 10):
#遍历文件夹,读取图片
for f in os.listdir("photo/%s" % i):
#获取图像名称
X.append("photo//" str(i) "//" str(f))
#获取图像类标即为文件夹名称
Y.append(i)
X = np.array(X)
Y = np.array(Y)
#随机率为100% 选取其中的30%作为测试集
X_train, X_test, y_train, y_test = train_test_split(X, Y,
test_size=0.3, random_state=1)
print len(X_train), len(X_test), len(y_train), len(y_test)
#----------------------------------------------------------------------------------
# 第二步 图像读取及转换为像素直方图
#----------------------------------------------------------------------------------
#训练集
XX_train = []
for i in X_train:
#读取图像
#print i
image = cv2.imread(i)
#图像像素大小一致
img = cv2.resize(image, (256,256),
interpolation=cv2.INTER_CUBIC)
#计算图像直方图并存储至X数组
hist = cv2.calcHist([img], [0,1], None,
[256,256], [0.0,255.0,0.0,255.0])
XX_train.append(((hist/255).flatten()))
#测试集
XX_test = []
for i in X_test:
#读取图像
#print i
image = cv2.imread(i)
#图像像素大小一致
img = cv2.resize(image, (256,256),
interpolation=cv2.INTER_CUBIC)
#计算图像直方图并存储至X数组
hist = cv2.calcHist([img], [0,1], None,
[256,256], [0.0,255.0,0.0,255.0])
XX_test.append(((hist/255).flatten()))
#----------------------------------------------------------------------------------
# 第三步 基于KNN的图像分类处理
#----------------------------------------------------------------------------------
from sklearn.neighbors import KNeighborsClassifier
clf = KNeighborsClassifier(n_neighbors=11).fit(XX_train, y_train)
predictions_labels = clf.predict(XX_test)
print u'预测结果:'
print predictions_labels
print u'算法评价:'
print (classification_report(y_test, predictions_labels))
#输出前10张图片及预测结果
k = 0
while k<10:
#读取图像
print X_test[k]
image = cv2.imread(X_test[k])
print predictions_labels[k]
#显示图像
cv2.imshow("img", image)
cv2.waitKey(0)
cv2.destroyAllWindows()
k = k 1
代码中对预测集的前十张图像进行了显示,其中“818.jpg”图像如图所示,其分类预测的类标结果为“8”,表示第8类山峰,预测结果正确。