使用KNN算法进行图像分类实验

2021-09-24 14:25:41 浏览数 (1)

使用KNN算法进行图像分类实验,最后算法评价的准确率(Precision)、召回率(Recall)和F值(F1-score)如图所示,其中平均准确率为0.64,平均召回率为0.55,平均F值为0.50,其结果不是非常理想。那么,如果采用CNN卷积神经网络进行分类,通过不断学习细节是否能提高准确度呢?

三.Tensorflow Opencv实现CNN图像分类

首先,我们需要在TensorFlow环境下安装OpenCV扩展包;其次需要通过TensorFlow环境搭建CNN神经网络;最后通过不断学实现图像分类实验。

1.OpenCV库安装

第一步,打开Anaconda程序,并选择已经安装好的“TensorFlow”环境,运行Spyder。

第二步,我们需要在TensorFlow环境中安装opencv-python扩展包,否则会提示错误“ModuleNotFoundError: No module named ‘cv2’”。调用Anaconda Prompt安装即可,如下图所示:

代码语言:javascript复制
activate tensorflow
pip install opencv-python

但是,由于anaconda的.org服务器在国外,下载速度很慢,提示错误“Anaconda An HTTP error occurred when trying to retrieve this URL.HTTP errors are often intermittent”。

  • 解决方法一:从国内清华的镜像下载
  • 解决方法二:从PYPI网站下载对应版本的opencv-python,在再安装本地下载的.whl文件。

由于第一种方法一直失败,这里推荐读者尝试第二种方法,同时作者会将“opencv_python-4.1.2-cp36-cp36m-win_amd64.whl”文件上传供大家直接使用。(4.1.2代表opencv的版本,cp36代表用的python3.6,并且是64位)。

第三步,调用PIP安装本地opencv扩展包。

代码语言:javascript复制
activate tensorflow
pip install C:UsersxiuzhangDesktopTensorFlowopencv_python-4.1.2-cp36-cp36m-win_amd64.whl

这种方法非常迅速,推荐大家使用。安装成功之后,开始编写我们的代码吧!

0 人点赞