扩展阅读 双流Join
介绍
https://ci.apache.org/projects/flink/flink-docs-release-1.12/dev/stream/operators/joining.html
https://zhuanlan.zhihu.com/p/340560908
https://blog.csdn.net/andyonlines/article/details/108173259
双流Join是Flink面试的高频问题。一般情况下说明以下几点就可以hold了:
- Join大体分类只有两种:Window Join和Interval Join。
- Window Join又可以根据Window的类型细分出3种:
Tumbling Window Join、Sliding Window Join、Session Widnow Join。
Windows类型的join都是利用window的机制,先将数据缓存在Window State中,当窗口触发计算时,执行join操作;
- interval join也是利用state存储数据再处理,区别在于state中的数据有失效机制,依靠数据触发数据清理;
目前Stream join的结果是数据的笛卡尔积;
Window Join
- Tumbling Window Join
执行翻滚窗口联接时,具有公共键和公共翻滚窗口的所有元素将作为成对组合联接,并传递给JoinFunction或FlatJoinFunction。因为它的行为类似于内部连接,所以一个流中的元素在其滚动窗口中没有来自另一个流的元素,因此不会被发射!
如图所示,我们定义了一个大小为2毫秒的翻滚窗口,结果窗口的形式为[0,1]、[2,3]、。。。。该图显示了每个窗口中所有元素的成对组合,这些元素将传递给JoinFunction。注意,在翻滚窗口[6,7]中没有发射任何东西,因为绿色流中不存在与橙色元素⑥和⑦结合的元素。
代码语言:javascript复制import org.apache.flink.api.java.functions.KeySelector;
import org.apache.flink.streaming.api.windowing.assigners.TumblingEventTimeWindows;
import org.apache.flink.streaming.api.windowing.time.Time;
...
DataStream<Integer> orangeStream = ...DataStream<Integer> greenStream = ...
orangeStream.join(greenStream)
.where(<KeySelector>)
.equalTo(<KeySelector>)
.window(TumblingEventTimeWindows.of(Time.milliseconds(2)))
.apply (new JoinFunction<Integer, Integer, String> (){
@Override
public String join(Integer first, Integer second) {
return first "," second;
}
});
- Sliding Window Join
在执行滑动窗口联接时,具有公共键和公共滑动窗口的所有元素将作为成对组合联接,并传递给JoinFunction或FlatJoinFunction。在当前滑动窗口中,一个流的元素没有来自另一个流的元素,则不会发射!请注意,某些元素可能会连接到一个滑动窗口中,但不会连接到另一个滑动窗口中!
在本例中,我们使用大小为2毫秒的滑动窗口,并将其滑动1毫秒,从而产生滑动窗口[-1,0],[0,1],[1,2],[2,3]…。x轴下方的连接元素是传递给每个滑动窗口的JoinFunction的元素。在这里,您还可以看到,例如,在窗口[2,3]中,橙色②与绿色③连接,但在窗口[1,2]中没有与任何对象连接。
代码语言:javascript复制import org.apache.flink.api.java.functions.KeySelector;
import org.apache.flink.streaming.api.windowing.assigners.SlidingEventTimeWindows;
import org.apache.flink.streaming.api.windowing.time.Time;
...
DataStream<Integer> orangeStream = ...DataStream<Integer> greenStream = ...
orangeStream.join(greenStream)
.where(<KeySelector>)
.equalTo(<KeySelector>)
.window(SlidingEventTimeWindows.of(Time.milliseconds(2) /* size */, Time.milliseconds(1) /* slide */))
.apply (new JoinFunction<Integer, Integer, String> (){
@Override
public String join(Integer first, Integer second) {
return first "," second;
}
});
- Session Window Join
在执行会话窗口联接时,具有相同键(当“组合”时满足会话条件)的所有元素以成对组合方式联接,并传递给JoinFunction或FlatJoinFunction。同样,这执行一个内部连接,所以如果有一个会话窗口只包含来自一个流的元素,则不会发出任何输出!
在这里,我们定义了一个会话窗口连接,其中每个会话被至少1ms的间隔分割。有三个会话,在前两个会话中,来自两个流的连接元素被传递给JoinFunction。在第三个会话中,绿色流中没有元素,所以⑧和⑨没有连接!
代码语言:javascript复制import org.apache.flink.api.java.functions.KeySelector;
import org.apache.flink.streaming.api.windowing.assigners.EventTimeSessionWindows;
import org.apache.flink.streaming.api.windowing.time.Time;
...
DataStream<Integer> orangeStream = ...DataStream<Integer> greenStream = ...
orangeStream.join(greenStream)
.where(<KeySelector>)
.equalTo(<KeySelector>)
.window(EventTimeSessionWindows.withGap(Time.milliseconds(1)))
.apply (new JoinFunction<Integer, Integer, String> (){
@Override
public String join(Integer first, Integer second) {
return first "," second;
}
});
Interval Join
前面学习的Window Join必须要在一个Window中进行JOIN,那如果没有Window如何处理呢?
interval join也是使用相同的key来join两个流(流A、流B),
并且流B中的元素中的时间戳,和流A元素的时间戳,有一个时间间隔。
b.timestamp ∈ [a.timestamp lowerBound; a.timestamp upperBound]
or
a.timestamp lowerBound <= b.timestamp <= a.timestamp upperBound
也就是:
流B的元素的时间戳 ≥ 流A的元素时间戳 下界,且,流B的元素的时间戳 ≤ 流A的元素时间戳 上界。
在上面的示例中,我们将两个流“orange”和“green”连接起来,其下限为-2毫秒,上限为 1毫秒。默认情况下,这些边界是包含的,但是可以应用.lowerBoundExclusive()和.upperBoundExclusive来更改行为
orangeElem.ts lowerBound <= greenElem.ts <= orangeElem.ts upperBound
代码语言:javascript复制import org.apache.flink.api.java.functions.KeySelector;
import org.apache.flink.streaming.api.functions.co.ProcessJoinFunction;
import org.apache.flink.streaming.api.windowing.time.Time;
...
DataStream<Integer> orangeStream = ...DataStream<Integer> greenStream = ...
orangeStream
.keyBy(<KeySelector>)
.intervalJoin(greenStream.keyBy(<KeySelector>))
.between(Time.milliseconds(-2), Time.milliseconds(1))
.process (new ProcessJoinFunction<Integer, Integer, String(){
@Override
public void processElement(Integer left, Integer right, Context ctx, Collector<String> out) {
out.collect(first "," second);
}
});
代码演示1
- 需求
来做个案例:
使用两个指定Source模拟数据,一个Source是订单明细,一个Source是商品数据。我们通过window join,将数据关联到一起。
- 思路
1、Window Join首先需要使用where和equalTo指定使用哪个key来进行关联,此处我们通过应用方法,基于GoodsId来关联两个流中的元素。
2、设置5秒的滚动窗口,流的元素关联都会在这个5秒的窗口中进行关联。
3、apply方法中实现将两个不同类型的元素关联并生成一个新类型的元素。
代码语言:javascript复制package cn.lanson.extend;
import com.alibaba.fastjson.JSON;
import lombok.Data;
import org.apache.flink.api.common.eventtime.*;
import org.apache.flink.configuration.Configuration;
import org.apache.flink.streaming.api.datastream.DataStream;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
import org.apache.flink.streaming.api.functions.source.RichSourceFunction;
import org.apache.flink.streaming.api.windowing.assigners.TumblingEventTimeWindows;
import org.apache.flink.streaming.api.windowing.time.Time;
import java.math.BigDecimal;
import java.util.ArrayList;
import java.util.List;
import java.util.Random;
import java.util.UUID;
import java.util.concurrent.TimeUnit;
/**
* Author lanson
* Desc
*/
public class JoinDemo01 {
public static void main(String[] args) throws Exception {
StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
// 构建商品数据流
DataStream<Goods> goodsDS = env.addSource(new GoodsSource())
.assignTimestampsAndWatermarks(new GoodsWatermark());
// 构建订单明细数据流
DataStream<OrderItem> orderItemDS = env.addSource(new OrderItemSource())
.assignTimestampsAndWatermarks(new OrderItemWatermark());
// 进行关联查询
DataStream<FactOrderItem> factOrderItemDS = orderItemDS.join(goodsDS)
// join条件:第一个流orderItemDS的GoodsId == 第二个流goodsDS的GoodsId
.where(OrderItem::getGoodsId)
.equalTo(Goods::getGoodsId)
//指定窗口
.window(TumblingEventTimeWindows.of(Time.seconds(5)))
//处理join结果
.apply((OrderItem item, Goods goods) -> {
FactOrderItem factOrderItem = new FactOrderItem();
factOrderItem.setGoodsId(goods.getGoodsId());
factOrderItem.setGoodsName(goods.getGoodsName());
factOrderItem.setCount(new BigDecimal(item.getCount()));
factOrderItem.setTotalMoney(goods.getGoodsPrice().multiply(new BigDecimal(item.getCount())));
return factOrderItem;
});
factOrderItemDS.print();
env.execute("滚动窗口JOIN");
}
//商品类
@Data
public static class Goods {
private String goodsId;
private String goodsName;
private BigDecimal goodsPrice;
public static List<Goods> GOODS_LIST;
public static Random r;
static {
r = new Random();
GOODS_LIST = new ArrayList<>();
GOODS_LIST.add(new Goods("1", "小米12", new BigDecimal(4890)));
GOODS_LIST.add(new Goods("2", "iphone12", new BigDecimal(12000)));
GOODS_LIST.add(new Goods("3", "MacBookPro", new BigDecimal(15000)));
GOODS_LIST.add(new Goods("4", "Thinkpad X1", new BigDecimal(9800)));
GOODS_LIST.add(new Goods("5", "MeiZu One", new BigDecimal(3200)));
GOODS_LIST.add(new Goods("6", "Mate 40", new BigDecimal(6500)));
}
public static Goods randomGoods() {
int rIndex = r.nextInt(GOODS_LIST.size());
return GOODS_LIST.get(rIndex);
}
public Goods() {
}
public Goods(String goodsId, String goodsName, BigDecimal goodsPrice) {
this.goodsId = goodsId;
this.goodsName = goodsName;
this.goodsPrice = goodsPrice;
}
@Override
public String toString() {
return JSON.toJSONString(this);
}
}
//订单明细类
@Data
public static class OrderItem {
private String itemId;
private String goodsId;
private Integer count;
@Override
public String toString() {
return JSON.toJSONString(this);
}
}
//关联结果
@Data
public static class FactOrderItem {
private String goodsId;
private String goodsName;
private BigDecimal count;
private BigDecimal totalMoney;
@Override
public String toString() {
return JSON.toJSONString(this);
}
}
//构建一个商品Stream源(这个好比就是维表)
public static class GoodsSource extends RichSourceFunction<Goods> {
private Boolean isCancel;
@Override
public void open(Configuration parameters) throws Exception {
isCancel = false;
}
@Override
public void run(SourceContext sourceContext) throws Exception {
while(!isCancel) {
Goods.GOODS_LIST.stream().forEach(goods -> sourceContext.collect(goods));
TimeUnit.SECONDS.sleep(1);
}
}
@Override
public void cancel() {
isCancel = true;
}
}
//构建订单明细Stream源
public static class OrderItemSource extends RichSourceFunction<OrderItem> {
private Boolean isCancel;
private Random r;
@Override
public void open(Configuration parameters) throws Exception {
isCancel = false;
r = new Random();
}
@Override
public void run(SourceContext sourceContext) throws Exception {
while(!isCancel) {
Goods goods = Goods.randomGoods();
OrderItem orderItem = new OrderItem();
orderItem.setGoodsId(goods.getGoodsId());
orderItem.setCount(r.nextInt(10) 1);
orderItem.setItemId(UUID.randomUUID().toString());
sourceContext.collect(orderItem);
orderItem.setGoodsId("111");
sourceContext.collect(orderItem);
TimeUnit.SECONDS.sleep(1);
}
}
@Override
public void cancel() {
isCancel = true;
}
}
//构建水印分配器,学习测试直接使用系统时间了
public static class GoodsWatermark implements WatermarkStrategy<Goods> {
@Override
public TimestampAssigner<Goods> createTimestampAssigner(TimestampAssignerSupplier.Context context) {
return (element, recordTimestamp) -> System.currentTimeMillis();
}
@Override
public WatermarkGenerator<Goods> createWatermarkGenerator(WatermarkGeneratorSupplier.Context context) {
return new WatermarkGenerator<Goods>() {
@Override
public void onEvent(Goods event, long eventTimestamp, WatermarkOutput output) {
output.emitWatermark(new Watermark(System.currentTimeMillis()));
}
@Override
public void onPeriodicEmit(WatermarkOutput output) {
output.emitWatermark(new Watermark(System.currentTimeMillis()));
}
};
}
}
//构建水印分配器,学习测试直接使用系统时间了
public static class OrderItemWatermark implements WatermarkStrategy<OrderItem> {
@Override
public TimestampAssigner<OrderItem> createTimestampAssigner(TimestampAssignerSupplier.Context context) {
return (element, recordTimestamp) -> System.currentTimeMillis();
}
@Override
public WatermarkGenerator<OrderItem> createWatermarkGenerator(WatermarkGeneratorSupplier.Context context) {
return new WatermarkGenerator<OrderItem>() {
@Override
public void onEvent(OrderItem event, long eventTimestamp, WatermarkOutput output) {
output.emitWatermark(new Watermark(System.currentTimeMillis()));
}
@Override
public void onPeriodicEmit(WatermarkOutput output) {
output.emitWatermark(new Watermark(System.currentTimeMillis()));
}
};
}
}
}
代码演示2
1、通过keyBy将两个流join到一起
2、interval join需要设置流A去关联哪个时间范围的流B中的元素。此处,我设置的下界为-1、上界为0,且上界是一个开区间。表达的意思就是流A中某个元素的时间,对应上一秒的流B中的元素。
3、process中将两个key一样的元素,关联在一起,并加载到一个新的FactOrderItem对象中
代码语言:javascript复制package cn.lanson.extend;
import com.alibaba.fastjson.JSON;
import lombok.Data;
import org.apache.flink.api.common.eventtime.*;
import org.apache.flink.configuration.Configuration;
import org.apache.flink.streaming.api.datastream.DataStream;
import org.apache.flink.streaming.api.datastream.SingleOutputStreamOperator;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
import org.apache.flink.streaming.api.functions.co.ProcessJoinFunction;
import org.apache.flink.streaming.api.functions.source.RichSourceFunction;
import org.apache.flink.streaming.api.windowing.time.Time;
import org.apache.flink.util.Collector;
import java.math.BigDecimal;
import java.util.ArrayList;
import java.util.List;
import java.util.Random;
import java.util.UUID;
import java.util.concurrent.TimeUnit;
/**
* Author lanson
* Desc
*/
public class JoinDemo02 {
public static void main(String[] args) throws Exception {
StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
// 构建商品数据流
DataStream<Goods> goodsDS = env.addSource(new GoodsSource())
.assignTimestampsAndWatermarks(new GoodsWatermark());
// 构建订单明细数据流
DataStream<OrderItem> orderItemDS = env.addSource(new OrderItemSource())
.assignTimestampsAndWatermarks(new OrderItemWatermark());
// 进行关联查询
SingleOutputStreamOperator<FactOrderItem> factOrderItemDS = orderItemDS.keyBy(OrderItem::getGoodsId)
.intervalJoin(goodsDS.keyBy(Goods::getGoodsId))
.between(Time.seconds(-1), Time.seconds(0))
//.upperBoundExclusive()
.process(new ProcessJoinFunction<OrderItem, Goods, FactOrderItem>() {
@Override
public void processElement(OrderItem left, Goods right, Context ctx, Collector<FactOrderItem> out) throws Exception {
FactOrderItem factOrderItem = new FactOrderItem();
factOrderItem.setGoodsId(right.getGoodsId());
factOrderItem.setGoodsName(right.getGoodsName());
factOrderItem.setCount(new BigDecimal(left.getCount()));
factOrderItem.setTotalMoney(right.getGoodsPrice().multiply(new BigDecimal(left.getCount())));
out.collect(factOrderItem);
}
});
factOrderItemDS.print();
env.execute("Interval JOIN");
}
//商品类
@Data
public static class Goods {
private String goodsId;
private String goodsName;
private BigDecimal goodsPrice;
public static List<Goods> GOODS_LIST;
public static Random r;
static {
r = new Random();
GOODS_LIST = new ArrayList<>();
GOODS_LIST.add(new Goods("1", "小米12", new BigDecimal(4890)));
GOODS_LIST.add(new Goods("2", "iphone12", new BigDecimal(12000)));
GOODS_LIST.add(new Goods("3", "MacBookPro", new BigDecimal(15000)));
GOODS_LIST.add(new Goods("4", "Thinkpad X1", new BigDecimal(9800)));
GOODS_LIST.add(new Goods("5", "MeiZu One", new BigDecimal(3200)));
GOODS_LIST.add(new Goods("6", "Mate 40", new BigDecimal(6500)));
}
public static Goods randomGoods() {
int rIndex = r.nextInt(GOODS_LIST.size());
return GOODS_LIST.get(rIndex);
}
public Goods() {
}
public Goods(String goodsId, String goodsName, BigDecimal goodsPrice) {
this.goodsId = goodsId;
this.goodsName = goodsName;
this.goodsPrice = goodsPrice;
}
@Override
public String toString() {
return JSON.toJSONString(this);
}
}
//订单明细类
@Data
public static class OrderItem {
private String itemId;
private String goodsId;
private Integer count;
@Override
public String toString() {
return JSON.toJSONString(this);
}
}
//关联结果
@Data
public static class FactOrderItem {
private String goodsId;
private String goodsName;
private BigDecimal count;
private BigDecimal totalMoney;
@Override
public String toString() {
return JSON.toJSONString(this);
}
}
//构建一个商品Stream源(这个好比就是维表)
public static class GoodsSource extends RichSourceFunction<Goods> {
private Boolean isCancel;
@Override
public void open(Configuration parameters) throws Exception {
isCancel = false;
}
@Override
public void run(SourceContext sourceContext) throws Exception {
while (!isCancel) {
Goods.GOODS_LIST.stream().forEach(goods -> sourceContext.collect(goods));
TimeUnit.SECONDS.sleep(1);
}
}
@Override
public void cancel() {
isCancel = true;
}
}
//构建订单明细Stream源
public static class OrderItemSource extends RichSourceFunction<OrderItem> {
private Boolean isCancel;
private Random r;
@Override
public void open(Configuration parameters) throws Exception {
isCancel = false;
r = new Random();
}
@Override
public void run(SourceContext sourceContext) throws Exception {
while (!isCancel) {
Goods goods = Goods.randomGoods();
OrderItem orderItem = new OrderItem();
orderItem.setGoodsId(goods.getGoodsId());
orderItem.setCount(r.nextInt(10) 1);
orderItem.setItemId(UUID.randomUUID().toString());
sourceContext.collect(orderItem);
orderItem.setGoodsId("111");
sourceContext.collect(orderItem);
TimeUnit.SECONDS.sleep(1);
}
}
@Override
public void cancel() {
isCancel = true;
}
}
//构建水印分配器,学习测试直接使用系统时间了
public static class GoodsWatermark implements WatermarkStrategy<Goods> {
@Override
public TimestampAssigner<Goods> createTimestampAssigner(TimestampAssignerSupplier.Context context) {
return (element, recordTimestamp) -> System.currentTimeMillis();
}
@Override
public WatermarkGenerator<Goods> createWatermarkGenerator(WatermarkGeneratorSupplier.Context context) {
return new WatermarkGenerator<Goods>() {
@Override
public void onEvent(Goods event, long eventTimestamp, WatermarkOutput output) {
output.emitWatermark(new Watermark(System.currentTimeMillis()));
}
@Override
public void onPeriodicEmit(WatermarkOutput output) {
output.emitWatermark(new Watermark(System.currentTimeMillis()));
}
};
}
}
//构建水印分配器,学习测试直接使用系统时间了
public static class OrderItemWatermark implements WatermarkStrategy<OrderItem> {
@Override
public TimestampAssigner<OrderItem> createTimestampAssigner(TimestampAssignerSupplier.Context context) {
return (element, recordTimestamp) -> System.currentTimeMillis();
}
@Override
public WatermarkGenerator<OrderItem> createWatermarkGenerator(WatermarkGeneratorSupplier.Context context) {
return new WatermarkGenerator<OrderItem>() {
@Override
public void onEvent(OrderItem event, long eventTimestamp, WatermarkOutput output) {
output.emitWatermark(new Watermark(System.currentTimeMillis()));
}
@Override
public void onPeriodicEmit(WatermarkOutput output) {
output.emitWatermark(new Watermark(System.currentTimeMillis()));
}
};
}
}
}
重点注意
注意:后面项目中涉及到双流
接下来的内容面试常问
代码语言:javascript复制双流Join是Flink面试的高频问题。一般情况下说明以下几点就可以hold了:
1.Join大体分类只有两种:Window Join和Interval Join。
2.Window Join又可以根据Window的类型细分出3种:
Tumbling 、Sliding 、Session Widnow Join。
3.Windows类型的join都是利用window的机制,先将数据缓存在Window State中,当窗口触发计算时,执行join操作;
4.interval join也是利用state存储数据再处理,区别在于state中的数据有失效机制,依靠数据触发数据清理;
看官网示例说明
https://ci.apache.org/projects/flink/flink-docs-release-1.12/dev/stream/operators/joining.html