一个 Sqrt 函数引发的血案

2021-10-18 17:37:27 浏览数 (1)

好吧,我承认我标题党了,不过既然你来了,就认真看下去吧,保证你有收获。

我们平时经常会有一些数据运算的操作,需要调用sqrt,exp,abs等函数,那么时候你有没有想过:这个些函数系统是如何实现的?就拿最常用的sqrt函数来说吧,系统怎么来实现这个经常调用的函数呢?

虽然有可能你平时没有想过这个问题,不过正所谓是“临阵磨枪,不快也光”,你“眉头一皱,计上心来”,这个不是太简单了嘛!

用二分的方法,在一个区间中,每次拿中间数的平方来试验,如果大了,就再试左区间的中间数;如果小了,就再拿右区间的中间数来试。比如求sqrt(16)的结果,你先试(0 16)/2=8,88=64,64比16大,然后就向左移,试(0 8)/2=4,44=16 刚好,你得到了正确的结果 sqrt(16)=4。然后你三下五除二就把程序写出来了:

代码语言:javascript复制
float SqrtByBisection(float n) //用二分法 
 2{ 
    if(n<0) //小于0的按照你需要的处理 
        return n; 
    float mid,last; 
    float low,up; 
    low=0,up=n; 
    mid=(low up)/2; 
    do
    {
        if(mid*mid>n)
            up=mid; 
        else 
            low=mid;
        last=mid;
        mid=(up low)/2; 
    }while(abs(mid-last) > eps);//精度控制
    return mid; 
}

然后看看和系统函数性能和精度的差别(其中时间单位不是秒也不是毫秒,而是CPU Tick,不管单位是什么,统一了就有可比性)

从图中可以看出,二分法和系统的方法结果上完全相同,但是性能上整整差了几百倍。为什么会有这么大的区别呢?难道系统有什么更好的办法?难道。。。。哦,对了,回忆下我们曾经的高数课,曾经老师教过我们“牛顿迭代法快速寻找平方根”,或者这种方法可以帮助我们,具体步骤如下:求出根号a的近似值:

  • 首先随便猜一个近似值x,
  • 然后不断令x等于x和a/x的平均数,迭代个六七次后x的值就已经相当精确了。

例如,我想求根号2等于多少。假如我猜测的结果为4,虽然错的离谱,但你可以看到使用牛顿迭代法后这个值很快就趋近于根号2了: ( 4 2/4 ) / 2 = 2.25 ( 2.25 2/2.25 ) / 2 = 1.56944.. ( 1.56944.. 2/1.56944..) / 2 = 1.42189.. ( 1.42189.. 2/1.42189..) / 2 = 1.41423.. ….

....

这种算法的原理很简单,我们仅仅是不断用(x,f(x))的切线来逼近方程x^2-a=0的根。根号a实际上就是x^2-a=0的一个正实根,这个函数的导数是2x。也就是说,函数上任一点(x,f(x))处的切线斜率是2x。那么,x-f(x)/(2x)就是一个比x更接近的近似值。代入 f(x)=x^2-a得到x-(x^2-a)/(2x),也就是(x a/x)/2。

相关的代码如下:

代码语言:javascript复制
float SqrtByNewton(float x)
 2{
    float val = x;//最终
    float last;//保存上一个计算的值
    do
    {
        last = val;
        val =(val   x/val) / 2;
    }while(abs(val-last) > eps);
    return val;
}

然后我们再来看下性能测试:

哇塞,性能提高了很多。可是和系统函数相比,还是有这么大差距,这是为什么呀?想啊想啊,想了很久仍然百思不得其解。突然有一天,我在网上看到一个神奇的方法,于是就有了今天的这篇文章,废话不多说,看代码先:

代码语言:javascript复制
float InvSqrt(float x)
 2{
    float xhalf = 0.5f*x;
    int i = *(int*)&x; // get bits for floating VALUE 
    i = 0x5f375a86- (i>>1); // gives initial guess y0
    x = *(float*)&i; // convert bits BACK to float
    x = x*(1.5f-xhalf*x*x); // Newton step, repeating increases accuracy
    x = x*(1.5f-xhalf*x*x); // Newton step, repeating increases accuracy
    x = x*(1.5f-xhalf*x*x); // Newton step, repeating increases accuracy

    return 1/x;
}

然后我们最后一次来看下性能测试:

这次真的是质变了,结果竟然比系统的还要好。。。哥真的是震惊了!!!哥吐血了!!!一个函数引发了血案!!!血案,血案。。。

到现在你是不是还不明白那个“鬼函数”,到底为什么速度那么快吗?不急,先看看下面的故事吧:

Quake-III Arena (雷神之锤3)是 90 年代的经典游戏之一。该系列的游戏不但画面和内容不错,而且即使计算机配置低,也能极其流畅地运行。这要归功于它 3D 引擎的开发者约翰-卡马克(John Carmack)。事实上早在90年代初DOS时代,只要能在PC上搞个小动画都能让人惊叹一番的时候,John Carmack就推出了石破天惊的Castle Wolfstein, 然后再接再励,doom, doomII, Quake…每次都把3-D技术推到极致。他的3D引擎代码资极度高效,几乎是在压榨PC机的每条运算指令。当初MS的Direct3D也得听取他的意见,修改了不少API。

最近,QUAKE 的开发商ID SOFTWARE 遵守GPL协议,公开了QUAKE-III的原代码,让世人有幸目睹 Carmack 传奇的 3D 引擎的原码。这是 QUAKE-III 原代码的下载地址:

链接: https://pan.baidu.com/s/1_ULzjp63wOkM0x7sVFlw1Q

提取码: mb8d

我们知道,越底层的函数,调用越频繁。3D引擎归根到底还是数学运算。那么找到最底层的数学运算函数(在game/code/q_math.c), 必然是精心编写的。里面有很多有趣的函数,很多都令人惊奇,估计我们几年时间都学不完。

在game/code/q_math.c里发现了这样一段代码。它的作用是将一个数开平方并取倒,经测试这段代码比(float)(1.0/sqrt(x))快4倍

代码语言:javascript复制
float Q_rsqrt( float number )
 2{
    long i;
    float x2, y;
    const float threehalfs = 1.5F;

    x2 = number * 0.5F;
    y   = number;
   // evil floating point bit level hacking
    i   = * ( long * ) &y;
   // what the fuck?
    i   = 0x5f3759df - ( i >> 1 );
    y   = * ( float * ) &i;
   // 1st iteration
    y   = y * ( threehalfs - ( x2 * y * y ) ); 
    // y   = y * ( threehalfs - ( x2 * y * y ) );
   // 2nd iteration, this can be removed

    #ifndef Q3_VM
    #ifdef __linux__
         assert( !isnan(y) ); // bk010122 - FPE?
    #endif
    #endif
    return y;
}  

函数返回1/sqrt(x),这个函数在图像处理中比sqrt(x)更有用。

注意到这个函数只用了一次叠代!(其实就是根本没用叠代,直接运算)。编译,实验,这个函数不仅工作的很好,而且比标准的sqrt()函数快4倍!要知道,编译器自带的函数,可是经过严格仔细的汇编优化的啊!

这个简洁的函数,最核心,也是最让人费解的,就是标注了“what the fuck?”的一句?

代码语言:javascript复制
i = 0x5f3759df - ( i >> 1 );
y  = y * ( threehalfs - ( x2 * y * y ) );

两句话就完成了开方运算!而且注意到,核心那句是定点移位运算,速度极快!特别在很多没有乘法指令的RISC结构CPU上,这样做是极其高效的。

算法的原理其实不复杂,就是牛顿迭代法,用x-f(x)/f'(x)来不断的逼近f(x)=a的根。

没错,一般的求平方根都是这么循环迭代算的但是卡马克(quake3作者)真正牛B的地方是他选择了一个神秘的常数0x5f3759df 来计算那个猜测值,就是我们加注释的那一行,那一行算出的值非常接近1/sqrt(n),这样我们只需要2次牛顿迭代就可以达到我们所需要的精度。好吧,如果这个还不算NB,接着看:

普渡大学的数学家Chris Lomont看了以后觉得有趣,决定要研究一下卡马克弄出来的这个猜测值有什么奥秘。Lomont也是个牛人,在精心研究之后从理论上也推导出一个最佳猜测值,和卡马克的数字非常接近, 0x5f37642f。卡马克真牛,他是外星人吗?

传奇并没有在这里结束。Lomont计算出结果以后非常满意,于是拿自己计算出的起始值和卡马克的神秘数字做比赛,看看谁的数字能够更快更精确的求得平方根。结果是卡马克赢了… 谁也不知道卡马克是怎么找到这个数字的。

最后Lomont怒了,采用暴力方法一个数字一个数字试过来,终于找到一个比卡马克数字要好上那么一丁点的数字,虽然实际上这两个数字所产生的结果非常近似,这个暴力得出的数字是0x5f375a86。

Lomont为此写下一篇论文,"Fast Inverse Square Root"。论文下载地址: http://www.math.purdue.edu/~clomont/Math/Papers/2003/InvSqrt.pdf http://www.matrix67.com/data/InvSqrt.pdf

参考:<IEEE Standard 754 for Binary Floating-Point Arithmetic><FAST INVERSE SQUARE ROOT>

最后,给出最精简的1/sqrt()函数:

代码语言:javascript复制
float InvSqrt(float x)
 2{
    float xhalf = 0.5f*x;
    // get bits for floating VALUE 
    int i = *(int*)&x;
    // gives initial guess y0
    i = 0x5f375a86- (i>>1);
    // convert bits BACK to float
    x = *(float*)&i;
    // Newton step, repeating increases accuracy
    x = x*(1.5f-xhalf*x*x);
    return x;
}  

大家可以尝试在PC机、51、AVR、430、ARM、上面编译并实验,惊讶一下它的工作效率。

前两天有一则新闻,大意是说 Ryszard Sommefeldt 很久以前看到这么样的一段 code (可能出自 Quake III 的 source code):

代码语言:javascript复制
float InvSqrt (float x) 
2{
    float xhalf = 0.5f*x;
    int i = *(int*)&x;
    i = 0x5f3759df - (i>>1);
    x = *(float*)&i;
    x = x*(1.5f - xhalf*x*x);
    return x;
}

他一看之下惊为天人,想要拜见这位前辈高人,但是一路追寻下去却一直找不到人;同时间也有其他人在找,虽然也没找到出处,但是 Chris Lomont 写了一篇论文 (in PDF) 解析这段 code 的算法 (用的是 Newton’s Method,牛顿法;比较重要的是后半段讲到怎么找出神奇的 0x5f3759df 的)。

  • PS. 这个 function 之所以重要,是因为求 开根号倒数 这个动作在 3D 运算 (向量运算的部份) 里面常常会用到,如果你用最原始的 sqrt() 然后再倒数的话,速度比上面的这个版本大概慢了四倍吧… XD
  • PS2. 在他们追寻的过程中,有人提到一份叫做 MIT HACKMEM 的文件,这是 1970 年代的 MIT 强者们做的一些笔记 (hack memo),大部份是 algorithm,有些 code 是 PDP-10 asm 写的,另外有少数是 C code (有人整理了一份列表)

好了,故事就到这里结束了,希望大家能有所收获。

0 人点赞