最近在看pandas,之前一致用SQL做数据处理,对于线下的小数据量,的确是pandas功能简洁实用,而且方便可视化操作。翻译来自于pandas官方网站上《10 Minutes to pandas》,首先是引入所需的包
代码语言:javascript复制import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
创建对象
具体见Data Structure Intro section
- 通过传递一个list对象来创建一个Series,pandas会默认创建整型索引:
s = pd.Series([1,3,5,np.nan,6,8])
# Out[5]:
# 0 1.0
# 1 3.0
# 2 5.0
# 3 NaN
# 4 6.0
# 5 8.0
# dtype: float64
- 通过传递一个numpy array,时间索引以及列标签来创建一个DataFrame:
dates = pd.date_range('20130101', periods=6)
# DatetimeIndex(['2013-01-01', '2013-01-02', '2013-01-03', '2013-01-04',
# '2013-01-05', '2013-01-06'],
# dtype='datetime64[ns]', freq='D')
df = pd.DataFrame(np.random.randn(6,4), index=dates, columns=list('ABCD'))
# A B C D
# 2013-01-01 0.469112 -0.282863 -1.509059 -1.135632
# 2013-01-02 1.212112 -0.173215 0.119209 -1.044236
# 2013-01-03 -0.861849 -2.104569 -0.494929 1.071804
# 2013-01-04 0.721555 -0.706771 -1.039575 0.271860
# 2013-01-05 -0.424972 0.567020 0.276232 -1.087401
# 2013-01-06 -0.673690 0.113648 -1.478427 0.524988
- 通过传递一个能够被转换成类似序列结构的字典对象来创建一个DataFrame:
df2 = pd.DataFrame({'A': 1.,
'B': pd.Timestamp('20130102'),
'C': pd.Series(1, index=list(range(4)), dtype='float32'),
'D': np.array([3] * 4, dtype='int32'),
'E': pd.Categorical(["test", "train", "test", "train"]),
'F': 'foo'})
# A B C D E F
# 0 1.0 2013-01-02 1.0 3 test foo
# 1 1.0 2013-01-02 1.0 3 train foo
# 2 1.0 2013-01-02 1.0 3 test foo
# 3 1.0 2013-01-02 1.0 3 train foo
- 查看不同列的数据类型:
df2.dtypes
# A float64
# B datetime64[ns]
# C float32
# D int32
# E category
# F object
# dtype: object
- 如果你使用的是IPython,使用Tab自动补全功能会自动识别所有的属性以及自定义的列.
df2.
# df2.A df2.bool
# ...
查看数据
来源Basics section
- 查看frame中头部和尾部的行
df.head()
# 头部,默认5行,可以指定显示行数。
# A B C D
# 2013-01-01 0.469112 -0.282863 -1.509059 -1.135632
# 2013-01-02 1.212112 -0.173215 0.119209 -1.044236
# 2013-01-03 -0.861849 -2.104569 -0.494929 1.071804
# 2013-01-04 0.721555 -0.706771 -1.039575 0.271860
# 2013-01-05 -0.424972 0.567020 0.276232 -1.087401
df.tail(3)
# 尾部
# A B C D
# 2013-01-04 0.721555 -0.706771 -1.039575 0.271860
# 2013-01-05 -0.424972 0.567020 0.276232 -1.087401
# 2013-01-06 -0.673690 0.113648 -1.478427 0.524988
- 显示索引、列和底层的numpy数据
df.index # 显示索引
# [2013-01-01, ..., 2013-01-06]
df.columns # 列
# Index(['A', 'B', 'C', 'D'], dtype='object')
df.values # 数据
# array([[ 0.4691, -0.2829, -1.5091, -1.1356],...])
- describe()函数对于数据的快速统计汇总
df.describe()
# A B C D
# count 6.000000 6.000000 6.000000 6.000000
# mean 0.073711 -0.431125 -0.687758 -0.233103
# std 0.843157 0.922818 0.779887 0.973118
# min -0.861849 -2.104569 -1.509059 -1.135632
# 25% -0.611510 -0.600794 -1.368714 -1.076610
# 50% 0.022070 -0.228039 -0.767252 -0.386188
# 75% 0.658444 0.041933 -0.034326 0.461706
# max 1.212112 0.567020 0.276232 1.071804
- 转置
df.T
- 按轴进行排序
df.sort_index(axis=1, ascending=False) # 即按列名排序,交换列位置。
- 按值进行排序
df.sort_values(by='B') # 按照列B的值升序排序
选择-Selection
虽然标准的Python/Numpy的选择和设置表达式都能够直接派上用场,但是作为工程使用的代码,我们推荐使用经过优化的pandas数据访问方式: .at, .iat, .loc, .iloc 和 .ix
详情请参阅Indexing and Selecing Data 和 MultiIndex / Advanced Indexing。
获取-Getting
- 选择一个单独的列,这将会返回一个Series,等同于df.A
df['A']
- 通过[]进行选择,这将会对行进行切片
df[0:3]
# A B C D
# 2013-01-01 0.469112 -0.282863 -1.509059 -1.135632
# 2013-01-02 1.212112 -0.173215 0.119209 -1.044236
# 2013-01-03 -0.861849 -2.104569 -0.494929 1.071804
df['20130102':'20130104']
# A B C D
# 2013-01-02 1.212112 -0.173215 0.119209 -1.044236
# 2013-01-03 -0.861849 -2.104569 -0.494929 1.071804
# 2013-01-04 0.721555 -0.706771 -1.039575 0.271860
通过标签选择-Selection by Label
参考Selection by Label
- 使用标签来获取一个交叉的区域
df.loc[dates[0]]
# A 0.469112
# B -0.282863
# C -1.509059
# D -1.135632
# Name: 2013-01-01 00:00:00, dtype: float64
- 通过标签来在多个轴上进行选择
df.loc[:,['A','B']]
# A B
# 2013-01-01 0.469112 -0.282863
# 2013-01-02 1.212112 -0.173215
# 2013-01-03 -0.861849 -2.104569
# 2013-01-04 0.721555 -0.706771
# 2013-01-05 -0.424972 0.567020
# 2013-01-06 -0.673690 0.113648
- 标签切片
df.loc['20130102':'20130104',['A','B']]
# Out[28]:
# A B
# 2013-01-02 1.212112 -0.173215
# 2013-01-03 -0.861849 -2.104569
# 2013-01-04 0.721555 -0.706771
- 对于返回的对象进行维度缩减
df.loc['20130102',['A','B']]
# Out[29]:
# A 1.212112
# B -0.173215
# Name: 2013-01-02 00:00:00, dtype: float64
- 获取一个标量
df.loc[dates[0],'A']
# Out[30]: 0.46911229990718628
- 快速访问一个标量(与上一个方法等价)
df.at[dates[0],'A']
# Out[31]: 0.46911229990718628
通过位置选择-Selection by Position
详情Selection by Position
- 通过传递数值进行位置选择(选择的是行)
In [32]: df.iloc[3]
# Out[32]:
# A 0.721555
# B -0.706771
# C -1.039575
# D 0.271860
# Name: 2013-01-04 00:00:00, dtype: float64
- 通过数值进行切片,与numpy/python中的情况类似
df.iloc[3:5,0:2]
# Out[33]:
# A B
# 2013-01-04 0.721555 -0.706771
# 2013-01-05 -0.424972 0.567020
- 通过指定一个位置的列表,与numpy/python中的情况类似
df.iloc[[1,2,4],[0,2]]
# Out[34]:
# A C
# 2013-01-02 1.212112 0.119209
# 2013-01-03 -0.861849 -0.494929
# 2013-01-05 -0.424972 0.276232
- 对行进行切片
df.iloc[1:3,:] # 1,2行
# Out[35]:
# A B C D
# 2013-01-02 1.212112 -0.173215 0.119209 -1.044236
# 2013-01-03 -0.861849 -2.104569 -0.494929 1.071804
- 对列进行切片
df.iloc[:,1:3] # 1,2列
# Out[36]:
# B C
# 2013-01-01 -0.282863 -1.509059
# # 2013-01-02 -0.173215 0.119209
# 2013-01-03 -2.104569 -0.494929
# 2013-01-04 -0.706771 -1.039575
# 2013-01-05 0.567020 0.276232
# 2013-01-06 0.113648 -1.478427
- 获取特定的值
df.iloc[1,1]
# Out[37]: -0.17321464905330858
# For getting fast access to a scalar
df.iat[1,1]
# Out[38]: -0.17321464905330858
布尔索引
- 使用一个单独列的值来选择数据
df[df.A > 0]
# A B C D
# 2013-01-01 0.469112 -0.282863 -1.509059 -1.135632
# 2013-01-02 1.212112 -0.173215 0.119209 -1.044236
# 2013-01-04 0.721555 -0.706771 -1.039575 0.271860
- 使用布尔条件来选择数据
df[df > 0]
# A B C D
# 2013-01-01 0.469112 NaN NaN NaN
# 2013-01-02 1.212112 NaN 0.119209 NaN
# 2013-01-03 NaN NaN NaN 1.071804
# 2013-01-04 0.721555 NaN NaN 0.271860
# 2013-01-05 NaN 0.567020 0.276232 NaN
# 2013-01-06 NaN 0.113648 NaN 0.524988
- 使用isin()方法来过滤
df2 = df.copy()
df2['E'] = ['one', 'one','two','three','four','three']
# A B C D E
# 2013-01-01 0.469112 -0.282863 -1.509059 -1.135632 one
# 2013-01-02 1.212112 -0.173215 0.119209 -1.044236 one
# 2013-01-03 -0.861849 -2.104569 -0.494929 1.071804 two
# 2013-01-04 0.721555 -0.706771 -1.039575 0.271860 three
# 2013-01-05 -0.424972 0.567020 0.276232 -1.087401 four
# 2013-01-06 -0.673690 0.113648 -1.478427 0.524988 three
df2[df2['E'].isin(['two','four'])]
# A B C D E
# 2013-01-03 -0.861849 -2.104569 -0.494929 1.071804 two
# 2013-01-05 -0.424972 0.567020 0.276232 -1.087401 four
设置-setting
- 设置一个新的列
s1 = pd.Series([1,2,3,4,5,6], index=pd.date_range('20130102', periods=6))
# 2013-01-02 1
# 2013-01-03 2
# 2013-01-04 3
# 2013-01-05 4
# 2013-01-06 5
# 2013-01-07 6
# Freq: D, dtype: int64
df['F'] = s1
- 通过标签设置新的值:
df.at[dates[0],'A'] = 0
- 通过位置设置新的值
df.iat[0,1] = 0
- 通过一个numpy数组设置一组新值
df.loc[:,'D'] = np.array([5] * len(df))
上诉操作之后的结果
代码语言:javascript复制 A B C D F
2013-01-01 0.000000 0.000000 -1.509059 5 NaN
2013-01-02 1.212112 -0.173215 0.119209 5 1.0
2013-01-03 -0.861849 -2.104569 -0.494929 5 2.0
2013-01-04 0.721555 -0.706771 -1.039575 5 3.0
2013-01-05 -0.424972 0.567020 0.276232 5 4.0
2013-01-06 -0.673690 0.113648 -1.478427 5 5.0
- 通过where操作来设置新的值
df2 = df.copy()
df2[df2 > 0] = -df2
# A B C D F
# 2013-01-01 0.000000 0.000000 -1.509059 -5 NaN
# 2013-01-02 -1.212112 -0.173215 -0.119209 -5 -1.0
# 2013-01-03 -0.861849 -2.104569 -0.494929 -5 -2.0
# 2013-01-04 -0.721555 -0.706771 -1.039575 -5 -3.0
# 2013-01-05 -0.424972 -0.567020 -0.276232 -5 -4.0
# 2013-01-06 -0.673690 -0.113648 -1.478427 -5 -5.0
缺失值处理
在pandas中,使用np.nan来代替缺失值,这些值将默认不会包含在计算中,详情请参阅:Missing Data Section。
- reindex()方法可以对指定轴上的索引进行改变/增加/删除操作,这将返回原始数据的一个拷贝
df1 = df.reindex(index=dates[0:4], columns=list(df.columns) ['E'])
df1.loc[dates[0]:dates[1],'E'] = 1
# A B C D F E
# 2013-01-01 0.000000 0.000000 -1.509059 5 NaN 1.0
# 2013-01-02 1.212112 -0.173215 0.119209 5 1.0 1.0
# 2013-01-03 -0.861849 -2.104569 -0.494929 5 2.0 NaN
# 2013-01-04 0.721555 -0.706771 -1.039575 5 3.0 NaN
- 去掉包含缺失值的行
df1.dropna(how='any')
# A B C D F E
# 2013-01-02 1.212112 -0.173215 0.119209 5 1.0 1.0
- 对缺失值进行填充
df1.fillna(value=5)
- 对数据进行布尔填充
pd.isnull(df1)
# A B C D F E
# 2013-01-01 False False False False True False
# 2013-01-02 False False False False False False
# 2013-01-03 False False False False False True
# 2013-01-04 False False False False False True
操作-Operations
详情 Basic Section On Binary Ops
统计
- 执行描述性统计,所有轴。
df.mean() # 均值
- 在指定轴上进行相同的操作
df.mean(1)
- 对于拥有不同维度,需要对齐的对象进行操作。Pandas会自动的沿着指定的维度进行广播
s = pd.Series([1,3,5,np.nan,6,8], index=dates).shift(2)
# Out[64]:
# 2013-01-01 NaN
# 2013-01-02 NaN
# 2013-01-03 1.0
# 2013-01-04 3.0
# 2013-01-05 5.0
# 2013-01-06 NaN
# Freq: D, dtype: float64
df.sub(s, axis='index')
# A B C D F
# 2013-01-01 NaN NaN NaN NaN NaN
# 2013-01-02 NaN NaN NaN NaN NaN
# 2013-01-03 -1.861849 -3.104569 -1.494929 4.0 1.0
# 2013-01-04 -2.278445 -3.706771 -4.039575 2.0 0.0
# 2013-01-05 -5.424972 -4.432980 -4.723768 0.0 -1.0
# 2013-01-06 NaN NaN NaN NaN NaN
应用
- 对数据应用函数
df.apply(np.cumsum) # 应用numpy的累计求和函数。
# A B C D F
# 2013-01-01 0.000000 0.000000 -1.509059 5 NaN
# 2013-01-02 1.212112 -0.173215 -1.389850 10 1.0
# 2013-01-03 0.350263 -2.277784 -1.884779 15 3.0
# 2013-01-04 1.071818 -2.984555 -2.924354 20 6.0
# 2013-01-05 0.646846 -2.417535 -2.648122 25 10.0
# 2013-01-06 -0.026844 -2.303886 -4.126549 30 15.0
df.apply(lambda x: x.max() - x.min())
#
# A 2.073961
# B 2.671590
# C 1.785291
# D 0.000000
# F 4.000000
# dtype: float64
直方图-Histogramming
具体参照:Histogramming and Discretization
代码语言:javascript复制s = pd.Series(np.random.randint(0, 7, size=10))
#
# 0 4
# 1 2
# 2 1
# 3 2
# 4 6
# 5 4
# 6 4
# 7 6
# 8 4
# 9 4
# dtype: int64
s.value_counts()
# 4 5
# 6 2
# 2 2
# 1 1
# dtype: int64
字符串方法
Series对象在其str属性中配备了一组字符串处理方法,可以很容易的应用到数组中的每个元素,如下段代码所示。更多详情请参考:Vectorized String Methods.
代码语言:javascript复制s = pd.Series(['A', 'B', 'C', 'Aaba', 'Baca', np.nan, 'CABA', 'dog', 'cat'])
s.str.lower()
#
# 0 a
# 1 b
# 2 c
# 3 aaba
# 4 baca
# 5 NaN
# 6 caba
# 7 dog
# 8 cat
# dtype: object
合并-Merge
Pandas提供了大量的方法能够轻松的对Series,DataFrame和Panel对象进行各种符合各种逻辑关系的合并操作。具体请参阅:Merging section
Concat
concat()
方法:
df = pd.DataFrame(np.random.randn(10, 4))
#
# 0 1 2 3
# 0 -0.548702 1.467327 -1.015962 -0.483075
# 1 1.637550 -1.217659 -0.291519 -1.745505
# 2 -0.263952 0.991460 -0.919069 0.266046
# 3 -0.709661 1.669052 1.037882 -1.705775
# 4 -0.919854 -0.042379 1.247642 -0.009920
# 5 0.290213 0.495767 0.362949 1.548106
# 6 -1.131345 -0.089329 0.337863 -0.945867
# 7 -0.932132 1.956030 0.017587 -0.016692
# 8 -0.575247 0.254161 -1.143704 0.215897
# 9 1.193555 -0.077118 -0.408530 -0.862495
# break it into pieces
pieces = [df[:3], df[3:7], df[7:]]
pd.concat(pieces)
# 0 1 2 3
# 0 -0.548702 1.467327 -1.015962 -0.483075
# 1 1.637550 -1.217659 -0.291519 -1.745505
# 2 -0.263952 0.991460 -0.919069 0.266046
# 3 -0.709661 1.669052 1.037882 -1.705775
# 4 -0.919854 -0.042379 1.247642 -0.009920
# 5 0.290213 0.495767 0.362949 1.548106
# 6 -1.131345 -0.089329 0.337863 -0.945867
# 7 -0.932132 1.956030 0.017587 -0.016692
# 8 -0.575247 0.254161 -1.143704 0.215897
# 9 1.193555 -0.077118 -0.408530 -0.862495
join
Join 类似于SQL类型的合并,具体请参阅:Database style joining
代码语言:javascript复制left = pd.DataFrame({'key': ['foo', 'foo'], 'lval': [1, 2]})
right = pd.DataFrame({'key': ['foo', 'foo'], 'rval': [4, 5]})
pd.merge(left, right, on='key')
# Out[81]:
# key lval rval
# 0 foo 1 4
# 1 foo 1 5
# 2 foo 2 4
# 3 foo 2 5
Append
Append 将一行连接到一个DataFrame上,具体请参阅Appending:
代码语言:javascript复制df = pd.DataFrame(np.random.randn(8, 4), columns=['A','B','C','D'])
s = df.iloc[3]
df.append(s, ignore_index=True)
Grouping
对于”group by”操作,我们通常是指以下一个或多个操作步骤:
- (Splitting)按照一些规则将数据分为不同的组;
- (Applying)对于每组数据分别执行一个函数;
- (Combining)将结果组合到一个数据结构中;
df = pd.DataFrame({'A' : ['foo', 'bar', 'foo', 'bar',
'foo', 'bar', 'foo', 'foo'],
'B' : ['one', 'one', 'two', 'three',
'two', 'two', 'one', 'three'],
'C' : np.random.randn(8),
'D' : np.random.randn(8)})
- 分组并对每个分组执行sum函数
df.groupby('A').sum()
# C D
# A B
# bar one -1.814470 2.395985
# three -0.595447 0.166599
# two -0.392670 -0.136473
# foo one -1.195665 -0.616981
# three 1.928123 -1.623033
# two 2.414034 1.600434
Reshaping
详情请参阅 Hierarchical Indexing 和 Reshaping。
Stack
stack()
方法“压缩”DataFrame列.
tuples = list(zip(*[['bar', 'bar', 'baz', 'baz',
'foo', 'foo', 'qux', 'qux'],
['one', 'two', 'one', 'two',
'one', 'two', 'one', 'two']]))
index = pd.MultiIndex.from_tuples(tuples, names=['first', 'second'])
df = pd.DataFrame(np.random.randn(8, 2), index=index, columns=['A', 'B'])
df2 = df[:4]
# A B
# first second
# bar one 0.029399 -0.542108
# two 0.282696 -0.087302
# baz one -1.575170 1.771208
# two 0.816482 1.100230
stacked = df2.stack()
# first second
# bar one A 0.029399
# B -0.542108
# two A 0.282696
# B -0.087302
# baz one A -1.575170
# B 1.771208
# two A 0.816482
# B 1.100230
# dtype: float64
stack()
和 unstack()
相互为反函数。
stacked.unstack()
# A B
# first second
# bar one 0.029399 -0.542108
# two 0.282696 -0.087302
# baz one -1.575170 1.771208
# two 0.816482 1.100230
stacked.unstack(1)
# second one two
# first
# bar A 0.029399 0.282696
# B -0.542108 -0.087302
# baz A -1.575170 0.816482
# B 1.771208 1.100230
stacked.unstack(0)
# first bar baz
# second
# one A 0.029399 -1.575170
# B -0.542108 1.771208
# two A 0.282696 0.816482
# B -0.087302 1.100230
数据透视表-Pivot Tables
详情请参阅:Pivot Tables.
代码语言:javascript复制df = pd.DataFrame({'A' : ['one', 'one', 'two', 'three'] * 3,
'B' : ['A', 'B', 'C'] * 4,
'C' : ['foo', 'foo', 'foo', 'bar', 'bar', 'bar'] * 2,
'D' : np.random.randn(12),
'E' : np.random.randn(12)})
#
# A B C D E
# 0 one A foo 1.418757 -0.179666
# 1 one B foo -1.879024 1.291836
# 2 two C foo 0.536826 -0.009614
# 3 three A bar 1.006160 0.392149
# 4 one B bar -0.029716 0.264599
# 5 one C bar -1.146178 -0.057409
# 6 two A foo 0.100900 -1.425638
# 7 three B foo -1.035018 1.024098
# 8 one C foo 0.314665 -0.106062
# 9 one A bar -0.773723 1.824375
# 10 two B bar -1.170653 0.595974
# 11 three C bar 0.648740 1.167115
生成数据透视表
代码语言:javascript复制pd.pivot_table(df, values='D', index=['A', 'B'], columns=['C'])
# Out[107]:
# C bar foo
# A B
# one A -0.773723 1.418757
# B -0.029716 -1.879024
# C -1.146178 0.314665
# three A 1.006160 NaN
# B NaN -1.035018
# C 0.648740 NaN
# two A NaN 0.100900
# B -1.170653 NaN
# C NaN 0.536826
时间序列-Time Series
Pandas在对频率转换进行重新采样时拥有简单、强大且高效的功能(如将按秒采样的数据转换为按5分钟为单位进行采样的数据)。这种操作在金融领域非常常见。具体参考:Time Series section。
代码语言:javascript复制rng = pd.date_range('1/1/2012', periods=100, freq='S')
ts = pd.Series(np.random.randint(0, 500, len(rng)), index=rng)
ts.resample('5Min').sum()
# 2012-01-01 25083
# Freq: 5T, dtype: int64
- 时区表示
rng = pd.date_range('3/6/2012 00:00', periods=5, freq='D')
ts = pd.Series(np.random.randn(len(rng)), rng)
# 2012-03-06 0.464000
# 2012-03-07 0.227371
# 2012-03-08 -0.496922
# 2012-03-09 0.306389
# 2012-03-10 -2.290613
# Freq: D, dtype: float64
ts_utc = ts.tz_localize('UTC')
# 2012-03-06 00:00:00 00:00 0.464000
# 2012-03-07 00:00:00 00:00 0.227371
# 2012-03-08 00:00:00 00:00 -0.496922
# 2012-03-09 00:00:00 00:00 0.306389
# 2012-03-10 00:00:00 00:00 -2.290613
# Freq: D, dtype: float64
- 时区转换
ts_utc.tz_convert('US/Eastern')
# Out[116]:
# 2012-03-05 19:00:00-05:00 0.464000
# 2012-03-06 19:00:00-05:00 0.227371
# 2012-03-07 19:00:00-05:00 -0.496922
# 2012-03-08 19:00:00-05:00 0.306389
# 2012-03-09 19:00:00-05:00 -2.290613
# Freq: D, dtype: float64
- 时间跨度转换
rng = pd.date_range('1/1/2012', periods=5, freq='M')
ts = pd.Series(np.random.randn(len(rng)), index=rng)
# 2012-01-31 -1.134623
# 2012-02-29 -1.561819
# 2012-03-31 -0.260838
# 2012-04-30 0.281957
# 2012-05-31 1.523962
# Freq: M, dtype: float64
ps = ts.to_period()
# 2012-01 -1.134623
# 2012-02 -1.561819
# 2012-03 -0.260838
# 2012-04 0.281957
# 2012-05 1.523962
# Freq: M, dtype: float64
ps.to_timestamp()
#
# 2012-01-01 -1.134623
# 2012-02-01 -1.561819
# 2012-03-01 -0.260838
# 2012-04-01 0.281957
# 2012-05-01 1.523962
# Freq: MS, dtype: float64
- 时期和时间戳之间的转换使得可以使用一些方便的算术函数。
prng = pd.period_range('1990Q1', '2000Q4', freq='Q-NOV')
ts = pd.Series(np.random.randn(len(prng)), prng)
ts.index = (prng.asfreq('M', 'e') 1).asfreq('H', 's') 9
ts.head()
# 1990-03-01 09:00 -0.902937
# 1990-06-01 09:00 0.068159
# 1990-09-01 09:00 -0.057873
# 1990-12-01 09:00 -0.368204
# 1991-03-01 09:00 -1.144073
# Freq: H, dtype: float64
Categorical
从0.15版本开始,pandas可以在DataFrame中支持Categorical类型的数据,详细 介绍参看:categorical introduction和API documentation。
代码语言:javascript复制df = pd.DataFrame({"id":[1,2,3,4,5,6], "raw_grade":['a', 'b', 'b', 'a', 'a', 'e']})
- 将原始的grade转换为Categorical数据类型
df["grade"] = df["raw_grade"].astype("category")
# Out[129]:
# 0 a
# 1 b
# 2 b
# 3 a
# 4 a
# 5 e
# Name: grade, dtype: category
# Categories (3, object): [a, b, e]
- 将Categorical类型数据重命名为更有意义的名称
df["grade"].cat.categories = ["very good", "good", "very bad"] # [a, b, e]
- 对类别进行重新排序,增加缺失的类别
df["grade"] = df["grade"].cat.set_categories(["very bad", "bad", "medium", "good", "very good"])
#
# 0 very good
# 1 good
# 2 good
# 3 very good
# 4 very good
# 5 very bad
# Name: grade, dtype: category
# Categories (5, object): [very bad, bad, medium, good, very good]
- 排序是按照Categorical的顺序进行的而不是按照字典顺序进行
df.sort_values(by="grade")
# Out[133]:
# id raw_grade grade
# 5 6 e very bad
# 1 2 b good
# 2 3 b good
# 0 1 a very good
# 3 4 a very good
# 4 5 a very good
- 对Categorical列进行排序时存在空的类别
df.groupby("grade").size()
# Out[134]:
# grade
# very bad 1
# bad 0
# medium 0
# good 2
# very good 3
# dtype: int64
画图-Plotting
具体文档参看:Plotting docs
代码语言:javascript复制ts = pd.Series(np.random.randn(1000), index=pd.date_range('1/1/2000', periods=1000))
ts = ts.cumsum()
ts.plot()
plt.show()
- 对于DataFrame来说,plot是一种将所有列及其标签进行绘制的简便方法:
df = pd.DataFrame(np.random.randn(1000, 4), index=ts.index,
columns=['A', 'B', 'C', 'D'])
df = df.cumsum()
plt.figure(); df.plot(); plt.legend(loc='best')
导入和保存数据
csv
参考:Writing to a csv file
- 写入csv
df.to_csv('foo.csv')
- 读取csv
pd.read_csv('foo.csv')
HDF5
参考:HDFStores
- 写入HDF5存储
df.to_hdf('foo.h5','df')
- 从HDF5存储中读取
pd.read_hdf('foo.h5','df')
Excel
参考: MS Excel
- 写入excel
df.to_excel('foo.xlsx', sheet_name='Sheet1')
- 读取excel
pd.read_excel('foo.xlsx', 'Sheet1', index_col=None, na_values=['NA'])
Gotchas
代码语言:javascript复制if pd.Series([False, True, False]):
print("I was true")
See Comparisons for an explanation and what to do.
See Gotchas as well.
Reference
- 10 Minutes to pandas
- Pandas分组统计函数:groupby、pivot_table及crosstab