自适应滤波器(adaptive filter)(2)--LMS算法

2021-10-25 16:27:54 浏览数 (1)

  1. 自适应 FIR 滤波器基础知识

自适应滤波器的一些经典应用包括系统识别、通道均衡、信号增强和信号预测。建议的应用程序是降噪,这是一种信号增强。下文描述了此类应用程序的一般案例。

当信号x(k)因噪声n1(k)损坏时,信号n2(k)与噪声相关。当算法收敛时,输出信号 e(k)将是信号的增强版本。

平均方形误差 (F[e [k]= [|E[e(k)|2])是重量参数的二次函数。此属性很重要,用于自适应过滤器,因为它只有一个通用的最小值。这意味着它适用于许多类型的自适应算法,并将导致一个体面的收敛行为。相比之下,IIR 过滤器需要更复杂的算法和对此问题的分析。

有许多自适应算法可用于信号增强,如牛顿算法、最陡峭的下降算法、最小平均方 (LMS) 算法和递归最小方块 (RLS) 算法。我们选择使用 LMS 算法,因为它是计算成本最低的算法,并提供了一个稳定的结果。

2 LMS算法

下面的方程描绘了 LMS 算法。

  1. 滤波: y (k) = XT(k) W (k)
  2. 错误估计: e (k) = d (k) - y (k)
  3. 滤波器系数更新: g (k)=2e (k)x (k) W (k 1) = W (k) ug (k) 其中 k 是算法的迭代次数 ,y(k)是滤波器输出,x(k)是输入信号组成的一组向量,w(k)是滤波器系数向量,e(k)是误差信号,d(k)是期望信号,u 是收敛因子(步长),W(k 1) 是下一次迭代的滤波器抽头权重。在这个算法中,g(k) 是一个重要的值。它是估计的梯度(E[e2(k)] 在抽头权重上的偏微分)或当前误差信号的平方的投影,e2(k) 在滤波器抽头权重上。当算法收敛时,g(k) 预计是一个非常小且均值为零的数。 步长 (u) 必须在 0 < u < 1/Lmax 范围内,其中 Lmax 是 R = E[X(k)TX(k)] 的最大特征值(R 的属性之一是 R 应该是非负实数)。实际上,当 Lmin 远小于 Lmax 时,建议 u 远小于 1/Lmax。该算法收敛所需的最小步数与 Lmax / Lmin 成正比。

FPGA_IC设计课程推广

对数字IC/FPGA设计更加感兴趣的同学,可以关注由15年前端经验的工程师SKY带来的数字IC设计入门课程。已有数家IC公司用该课程做新人培训。

详情请点击下面的链接了解:数字IC/FPGA设计_从入门到精通

或点击阅读原文链接直通设计课程。

0 人点赞