numpy中np.array()与np.asarray的区别以及.tolist

2022-09-02 19:52:18 浏览数 (1)

array和asarray都可以将结构数据转化为ndarray,但是主要区别就是当数据源是ndarray时,array仍然会copy出一个副本,占用新的内存,但asarray不会。

1、输入为列表时

代码语言:javascript复制
a=[[1,2,3],[4,5,6],[7,8,9]]

b=np.array(a)

c=np.asarray(a)

a[2]=1

print(a)

print(b)

print(c)

从中我们可以看出np.array与np.asarray功能是一样的,都是将输入转为矩阵格式。当输入是列表的时候,更改列表的值并不会影响转化为矩阵的值。

2、输入为数组时

代码语言:javascript复制
a=np.random.random((3,3))

print(a.dtype)

b=np.array(a,dtype='float64')

c=np.asarray(a,dtype='float64')

a[2]=2

print(a)

print(b)

print(c)

从上述结果我们可以看出np.array与np.asarray的区别,其在于输入为数组时,np.array是将输入copy过去而np.asarray是将输入cut过去,所以随着输入的改变np.array的输出不变,而np.asarray的输出在变化,并且当我们使用np.asarray改变其类型的时候(输入是float64,改为float32),这样当输入改变的时候,np.asarray的输出也不会改变。

3、array类型转为list类型

代码语言:javascript复制
a=np.random.random((3,3))

print(a.dtype)

b=a.tolist()

a[1]=2

print(a)

print(b)

从上述我们可以看到.tolist是将数组转为list的格式,等同于np.array的反向,那什么情况下需要将np.ndarray转为list的格式呢?当需要序列化的时候(serialization),由于np.ndarray是不可序列化的。

0 人点赞