为什么在Python代码中装饰器很重要

2021-03-12 17:07:27 浏览数 (1)

01

什么是装饰器?

要理解什么是装饰器,您首先需要熟悉Python处理函数的方式。从它的观点来看,函数和对象没有什么不同。它们有属性,可以重新分配:

代码语言:javascript复制
def func(): 
  print('hello from func') 
func() 
> hello from func 
new_func = func 
new_func() 
> hello from func 
print(new_func.__name__) 
> func

此外,你还可以将它们作为参数传递给其他函数:

代码语言:javascript复制
def func(): 
  print('hello from func') 
def call_func_twice(callback): 
  callback() 
  callback() 
call_func_twice(func) 
> hello from func 
> hello from func

现在,我们介绍装饰器。装饰器(decorator)用于修改函数或类的行为。实现这一点的方法是定义一个返回另一个函数的函数(装饰器)。这听起来很复杂,但是通过这个例子你会理解所有的东西:

代码语言:javascript复制
def logging_decorator(func):
  def logging_wrapper(*args, **kwargs):
    print(f'Before {func.__name__}')
    func(*args, **kwargs)
    print(f'After {func.__name__}')
  return logging_wrapper
    
@logging_decorator
def sum(x, y):
  print(x   y)
  
sum(2, 5)
> Before sum
> 7
> After sum

让我们一步一步来:

  1. 首先,我们在第1行定义logging_decorator函数。它只接受一个参数,也就是我们要修饰的函数。
  2. 在内部,我们定义了另一个函数:logging_wrapper。然后返回logging_wrapper,并使用它来代替原来的修饰函数。
  3. 在第7行,您可以看到如何将装饰器应用到sum函数。
  4. 在第11行,当我们调用sum时,它不仅仅调用sum。它将调用logging_wrapper,它将在调用sum之前和之后记录日志。

02

为什么需要装饰器

这很简单:可读性。Python因其清晰简洁的语法而备受赞誉,装饰器也不例外。如果有任何行为是多个函数共有的,那么您可能需要制作一个装饰器。下面是一些可能会派上用场的例子:

  • 在运行时检查实参类型
  • 基准函数调用
  • 缓存功能的结果
  • 计数函数调用
  • 检查元数据(权限、角色等)
  • 元编程

和更多…

现在我们将列出一些代码示例。

03

例子

带有返回值的装饰器

假设我们想知道每个函数调用需要多长时间。而且,函数大多数时候都会返回一些东西,所以装饰器也必须处理它:

代码语言:javascript复制
def timer_decorator(func):
  def timer_wrapper(*args, **kwargs):
    import datetime                 
    before = datetime.datetime.now()                     
    result = func(*args,**kwargs)                
    after = datetime.datetime.now()                      
    print "Elapsed Time = {0}".format(after-before)      
    return result
    
@timer_decorator
def sum(x, y):
  print(x   y)
  return x   y
  
sum(2, 5)
> 7
> Elapsed Time = some time

可以看到,我们将返回值存储在第5行的result中。但在返回之前,我们必须完成对函数的计时。这是一个没有装饰者就不可能实现的行为例子。

带有参数的装饰器

有时候,我们想要一个接受值的装饰器(比如Flask中的@app.route('/login'):

代码语言:javascript复制
def permission_decorator(permission):
  def _permission_decorator(func):
    def permission_wrapper(*args, **kwargs):
      if someUserApi.hasPermission(permission):
        result = func(*args, **kwargs)
        return result
      return None
    return permission wrapper
  return _permission_decorator

@permission_decorator('admin')
def delete_user(user):
  someUserApi.deleteUser(user)

为了实现这一点,我们定义了一个额外的函数,它接受一个参数并返回一个装饰器。

带有类的装饰器

使用类代替函数来修饰是可能的。唯一的区别是语法,所以请使用您更熟悉的语法。下面是使用类重写的日志装饰器:

代码语言:javascript复制
class Logging: 
  
    def __init__(self, function): 
        self.function = function 
  
    def __call__(self, *args, **kwargs):
      print(f'Before {self.function.__name__}')
      self.function(*args, **kwargs)
      print(f'After {self.function.__name__}')
  
  
@Logging
def sum(x, y):
  print(x   y)

sum(5, 2)
> Before sum
> 7
> After sum

这样做的好处是,您不必处理嵌套函数。你所需要做的就是定义一个类并覆盖__call__方法。

装饰类

有时,您可能想要修饰类中的每个方法。你可以这样写

代码语言:javascript复制
class MyClass: 
  @decorator 
  def func1(self): 
    pass 
  @decorator 
  def func2(self): 
    pass

但如果你有很多方法,这可能会失控。值得庆幸的是,有一种方法可以一次性装饰整个班级:

代码语言:javascript复制
def logging_decorator(func):
  def logging_wrapper(*args, **kwargs):
    print(f'Before {func.__name__}')
    result = func(*args, **kwargs)
    print(f'After {func.__name__}')
    return result
  return logging_wrapper

def log_all_class_methods(cls):
    class NewCls(object):
      def __init__(self, *args, **kwargs):
        self.original = cls(*args, **kwargs)
      
      def __getattribute__(self, s):
        try:    
          x = super(NewCls,self).__getattribute__(s)
        except AttributeError:      
          pass
        else:
          return x
        x = self.original.__getattribute__(s)
        if type(x) == type(self.__init__): 
          return logging_decorator(x)                 
        else:
          return x
    return NewCls
    
@log_all_class_methods
class SomeMethods:
  def func1(self):
    print('func1')
    
  def func2(self):
    print('func2')
    
methods = SomeMethods()
methods.func1()
> Before func1
> func1
> After func1

现在,不要惊慌。这看起来很复杂,但逻辑是一样的:

  • 首先,我们让logging_decorator保持原样。它将应用于类的所有方法。
  • 然后我们定义一个新的装饰器:log_all_class_methods。它类似于普通的装饰器,但却返回一个类。
  • NewCls有一个自定义的__getattribute__。对于对原始类的所有调用,它将使用logging_decorator装饰函数。

内置的修饰符

您不仅可以定义自己的decorator,而且在标准库中也提供了一些decorator。我将列出与我一起工作最多的三个人:

@property -一个内置插件的装饰器,它允许你为类属性定义getter和setter。

@lru_cache - functools模块的装饰器。它记忆函数参数和返回值,这对于纯函数(如阶乘)很方便。

@abstractmethod——abc模块的装饰器。指示该方法是抽象的,且缺少实现细节。

·END·

0 人点赞