Scrapy源码剖析(四)Scrapy如何完成抓取任务?

2021-03-23 12:17:42 浏览数 (1)

上一篇文章:Scrapy源码剖析(三)Scrapy有哪些核心组件?我们已经分析了 Scrapy 核心组件的主要职责,以及它们在初始化时都完成了哪些工作。

这篇文章就让我们来看一下,也是 Scrapy 最核心的抓取流程是如何运行的,它是如何调度各个组件,完成整个抓取工作的。

运行入口

还是回到最初的入口,在Scrapy源码剖析(二)Scrapy是如何运行起来的?这篇文章中我们已经详细分析过了,在执行 Scrapy 命令时,主要经过以下几步:

  • 调用 cmdline.pyexecute 方法
  • 找到对应的 命令实例 解析命令行
  • 构建 CrawlerProcess 实例,调用 crawlstart 方法开始抓取

crawl 方法最终是调用了 Cralwer 实例的 crawl,这个方法最终把控制权交给了Engine,而 start 方法注册好协程池,就开始异步调度执行了。

我们来看 Cralwercrawl 方法:

代码语言:javascript复制
@defer.inlineCallbacks
def crawl(self, *args, **kwargs):
    assert not self.crawling, "Crawling already taking place"
    self.crawling = True
    try:
        # 创建爬虫实例
        self.spider = self._create_spider(*args, **kwargs)
        # 创建引擎
        self.engine = self._create_engine()
        # 调用spider的start_requests 获取种子URL
        start_requests = iter(self.spider.start_requests())
        # 调用engine的open_spider 交由引擎调度
        yield self.engine.open_spider(self.spider, start_requests)
        yield defer.maybeDeferred(self.engine.start)
    except Exception:
        if six.PY2:
            exc_info = sys.exc_info()
        self.crawling = False
        if self.engine is not None:
            yield self.engine.close()
        if six.PY2:
            six.reraise(*exc_info)
        raise

这里首先会创建出爬虫实例,然后创建引擎,之后调用了 spiderstart_requests 方法,这个方法就是我们平时写的最多爬虫类的父类,它在 spiders/__init__.py 中定义:

代码语言:javascript复制
def start_requests(self):
    # 根据定义好的start_urls属性 生成种子URL对象
    for url in self.start_urls:
        yield self.make_requests_from_url(url)

def make_requests_from_url(self, url):
    # 构建Request对象
    return Request(url, dont_filter=True)

构建请求

通过上面这段代码,我们能看到,平时我们必须要定义的 start_urls 属性,原来就是在这里用来构建 Request 的,来看 Request 的定义:

代码语言:javascript复制
class Request(object_ref):

    def __init__(self, url, callback=None, method='GET', headers=None, body=None,
                 cookies=None, meta=None, encoding='utf-8', priority=0,
                 dont_filter=False, errback=None):
        # 编码
        self._encoding = encoding
        # 请求方法
        self.method = str(method).upper()
        # 设置url
        self._set_url(url)
        # 设置body
        self._set_body(body)
        assert isinstance(priority, int), "Request priority not an integer: %r" % priority
        # 优先级
        self.priority = priority
        assert callback or not errback, "Cannot use errback without a callback"
        # 回调函数
        self.callback = callback
        # 异常回调函数
        self.errback = errback
        # cookies
        self.cookies = cookies or {}
        # 构建Header
        self.headers = Headers(headers or {}, encoding=encoding)
        # 是否需要过滤
        self.dont_filter = dont_filter
  # 附加信息
        self._meta = dict(meta) if meta else None

Request 对象比较简单,就是封装了请求参数、请求方法、回调以及可附加的属性信息。

当然,你也可以在子类中重写 start_requestsmake_requests_from_url 这 2 个方法,用来自定义逻辑构建种子请求。

引擎调度

再回到 crawl 方法,构建好种子请求对象后,调用了 engineopen_spider

代码语言:javascript复制
@defer.inlineCallbacks
def open_spider(self, spider, start_requests=(), close_if_idle=True):
    assert self.has_capacity(), "No free spider slot when opening %r" % 
        spider.name
    logger.info("Spider opened", extra={'spider': spider})
    # 注册_next_request调度方法 循环调度
    nextcall = CallLaterOnce(self._next_request, spider)
    # 初始化scheduler
    scheduler = self.scheduler_cls.from_crawler(self.crawler)
    # 调用爬虫中间件 处理种子请求
    start_requests = yield self.scraper.spidermw.process_start_requests(start_requests, spider)
    # 封装Slot对象
    slot = Slot(start_requests, close_if_idle, nextcall, scheduler)
    self.slot = slot
    self.spider = spider
    # 调用scheduler的open
    yield scheduler.open(spider)
    # 调用scrapyer的open
    yield self.scraper.open_spider(spider)
    # 调用stats的open
    self.crawler.stats.open_spider(spider)
    yield self.signals.send_catch_log_deferred(signals.spider_opened, spider=spider)
    # 发起调度
    slot.nextcall.schedule()
    slot.heartbeat.start(5)

在这里首先构建了一个 CallLaterOnce,之后把 _next_request 方法注册了进去,看此类的实现:

代码语言:javascript复制
class CallLaterOnce(object):
    # 在twisted的reactor中循环调度一个方法
    def __init__(self, func, *a, **kw):
        self._func = func
        self._a = a
        self._kw = kw
        self._call = None

    def schedule(self, delay=0):
        # 上次发起调度 才可再次继续调度
        if self._call is None:
            # 注册self到callLater中
            self._call = reactor.callLater(delay, self)

    def cancel(self):
        if self._call:
            self._call.cancel()

    def __call__(self):
        # 上面注册的是self 所以会执行__call__
        self._call = None
        return self._func(*self._a, **self._kw) 

这里封装了循环执行的方法类,并且注册的方法会在 twistedreactor 中异步执行,以后执行只需调用 schedule,就会注册 selfreactorcallLater 中,然后它会执行 __call__ 方法,最终执行的就是我们注册的方法。

而这里我们注册的方法就是引擎的 _next_request,也就是说,此方法会循环调度,直到程序退出。

之后调用了爬虫中间件的 process_start_requests 方法,你可以定义多个自己的爬虫中间件,每个类都重写此方法,爬虫在调度之前会分别调用你定义好的爬虫中间件,来处理初始化请求,你可以进行过滤、加工、筛选以及你想做的任何逻辑。

这样做的好处就是,把想做的逻辑拆分成多个中间件,每个中间件功能独立,而且维护起来更加清晰。

调度器

接下来就要开始调度任务了,这里首先调用了 Scheduleropen

代码语言:javascript复制
def open(self, spider):
    self.spider = spider
    # 实例化优先级队列
    self.mqs = self.pqclass(self._newmq)
    # 如果定义了dqdir则实例化基于磁盘的队列
    self.dqs = self._dq() if self.dqdir else None
    # 调用请求指纹过滤器的open方法
    return self.df.open()
    
def _dq(self):
    # 实例化磁盘队列
    activef = join(self.dqdir, 'active.json')
    if exists(activef):
        with open(activef) as f:
            prios = json.load(f)
    else:
        prios = ()
    q = self.pqclass(self._newdq, startprios=prios)
    if q:
        logger.info("Resuming crawl (%(queuesize)d requests scheduled)",
                    {'queuesize': len(q)}, extra={'spider': self.spider})
    return q

open 方法中,调度器会实例化出优先级队列,以及根据 dqdir是否配置,决定是否使用磁盘队列,最后调用了请求指纹过滤器open 方法,这个方法在父类 BaseDupeFilter 中定义:

代码语言:javascript复制
class BaseDupeFilter(object):
    # 过滤器基类,子类可重写以下方法
    @classmethod
    def from_settings(cls, settings):
        return cls()

    def request_seen(self, request):
        # 请求过滤
        return False

    def open(self):
        # 可重写 完成过滤器的初始化工作
        pass

    def close(self, reason):
        # 可重写 完成关闭过滤器工作
        pass

    def log(self, request, spider):
        pas

请求过滤器提供了请求过滤的具体实现方式,Scrapy 默认提供了 RFPDupeFilter 过滤器实现过滤重复请求的逻辑,这里先对这个类有个了解,后面会讲具体是如何过滤重复请求的。

Scraper

再之后就调用 Scraperopen_spider 方法,在之前的文章中我们提到过,Scraper 类是连接 EngineSpiderItem Pipeline 这 3 个组件的桥梁:

代码语言:javascript复制
@defer.inlineCallbacks
def open_spider(self, spider):
    self.slot = Slot()
    # 调用所有pipeline的open_spider
    yield self.itemproc.open_spider(spider)

这里的主要逻辑是 Scraper 调用所有 Pipelineopen_spider 方法,如果我们定义了多个 Pipeline 输出类,可以重写 open_spider 完成每个 Pipeline 在输出前的初始化工作。

循环调度

调用了一系列组件的 open 方法后,最后调用了 nextcall.schedule() 开始调度,也就是循环执行在上面注册的 _next_request 方法:

代码语言:javascript复制
def _next_request(self, spider):
    # 此方法会循环调度
    slot = self.slot
    if not slot:
        return
    # 暂停
    if self.paused:
        return
    # 是否等待
    while not self._needs_backout(spider):
        # 从scheduler中获取request
        # 注意:第一次获取时,是没有的,也就是会break出来
        # 从而执行下面的逻辑
        if not self._next_request_from_scheduler(spider):
            break
    # 如果start_requests有数据且不需要等待
    if slot.start_requests and not self._needs_backout(spider):
        try:
            # 获取下一个种子请求
            request = next(slot.start_requests)
        except StopIteration:
            slot.start_requests = None
        except Exception:
            slot.start_requests = None
            logger.error('Error while obtaining start requests',
                         exc_info=True, extra={'spider': spider})
        else:
            # 调用crawl,实际是把request放入scheduler的队列中
            self.crawl(request, spider)
    # 空闲则关闭spider
    if self.spider_is_idle(spider) and slot.close_if_idle:
        self._spider_idle(spider)
        
def _needs_backout(self, spider):
    # 是否需要等待,取决4个条件
    # 1. Engine是否stop
    # 2. slot是否close
    # 3. downloader下载超过预设
    # 4. scraper处理response超过预设
    slot = self.slot
    return not self.running 
        or slot.closing 
        or self.downloader.needs_backout() 
        or self.scraper.slot.needs_backout()

def _next_request_from_scheduler(self, spider):
    slot = self.slot
    # 从scheduler拿出下个request
    request = slot.scheduler.next_request()
    if not request:
        return
    # 下载
    d = self._download(request, spider)
    # 注册成功、失败、出口回调方法
    d.addBoth(self._handle_downloader_output, request, spider)
    d.addErrback(lambda f: logger.info('Error while handling downloader output',
                                       exc_info=failure_to_exc_info(f),
                                       extra={'spider': spider}))
    d.addBoth(lambda _: slot.remove_request(request))
    d.addErrback(lambda f: logger.info('Error while removing request from slot',
                                       exc_info=failure_to_exc_info(f),
                                       extra={'spider': spider}))
    d.addBoth(lambda _: slot.nextcall.schedule())
    d.addErrback(lambda f: logger.info('Error while scheduling new request',
                                       exc_info=failure_to_exc_info(f),
                                       extra={'spider': spider}))
    return d
    

def crawl(self, request, spider):
    assert spider in self.open_spiders, 
        "Spider %r not opened when crawling: %s" % (spider.name, request)
    # request放入scheduler队列,调用nextcall的schedule
    self.schedule(request, spider)
    self.slot.nextcall.schedule()

def schedule(self, request, spider):
    self.signals.send_catch_log(signal=signals.request_scheduled,
            request=request, spider=spider)
    # 调用scheduler的enqueue_request,把request放入scheduler队列
    if not self.slot.scheduler.enqueue_request(request):
        self.signals.send_catch_log(signal=signals.request_dropped,
                                    request=request, spider=spider)

_next_request 方法首先调用 _needs_backout 检查是否需要等待,等待的条件有以下几种情况:

  • 引擎是否主动关闭
  • Slot是否关闭
  • 下载器在网络下载时是否超过预设参数
  • Scraper处理输出是否超过预设参数

如果不需要等待,则调用 _next_request_from_scheduler,此方法从名字上就能看出,主要是从 Schduler 中获取 Request

这里要注意,在第一次调用此方法时,Scheduler 中是没有放入任何 Request 的,这里会直接break 出来,执行下面的逻辑,而下面就会调用 crawl 方法,实际是把请求放到 Scheduler 的请求队列,放入队列的过程会经过请求过滤器校验是否重复。

下次再调用 _next_request_from_scheduler 时,就能从 Scheduler 中获取到下载请求,然后执行下载动作。

先来看第一次调度,执行 crawl

代码语言:javascript复制
def crawl(self, request, spider):
    assert spider in self.open_spiders, 
        "Spider %r not opened when crawling: %s" % (spider.name, request)
    # 放入Scheduler队列
    self.schedule(request, spider)
    # 进行下一次调度
    self.slot.nextcall.schedule()
    
def schedule(self, request, spider):
    self.signals.send_catch_log(signal=signals.request_scheduled,
            request=request, spider=spider)
    # 放入Scheduler队列
    if not self.slot.scheduler.enqueue_request(request):
        self.signals.send_catch_log(signal=signals.request_dropped,
                                    request=request, spider=spider)

调用引擎的 crawl 实际就是把请求放入 Scheduler 的队列中,下面看请求是如何入队列的。

请求入队

Scheduler 请求入队方法:

代码语言:javascript复制
def enqueue_request(self, request):
    # 请求入队 若请求过滤器验证重复 返回False
    if not request.dont_filter and self.df.request_seen(request):
        self.df.log(request, self.spider)
        return False
    # 磁盘队列是否入队成功
    dqok = self._dqpush(request)
    if dqok:
        self.stats.inc_value('scheduler/enqueued/disk', spider=self.spider)
    else:
        # 没有定义磁盘队列 则使用内存队列
        self._mqpush(request)
        self.stats.inc_value('scheduler/enqueued/memory', spider=self.spider)
    self.stats.inc_value('scheduler/enqueued', spider=self.spider)
    return True
    
def _dqpush(self, request):
    # 是否定义磁盘队列
    if self.dqs is None:
        return
    try:
        # Request对象转dict
        reqd = request_to_dict(request, self.spider)
        # 放入磁盘队列
        self.dqs.push(reqd, -request.priority)
    except ValueError as e:  # non serializable request
        if self.logunser:
            msg = ("Unable to serialize request: %(request)s - reason:"
                   " %(reason)s - no more unserializable requests will be"
                   " logged (stats being collected)")
            logger.warning(msg, {'request': request, 'reason': e},
                           exc_info=True, extra={'spider': self.spider})
            self.logunser = False
        self.stats.inc_value('scheduler/unserializable',
                             spider=self.spider)
        return
    else:
        return True
    
def _mqpush(self, request):
    # 入内存队列
    self.mqs.push(request, -request.priority)

在上一篇文章时有说到,调度器主要定义了 2 种队列:基于磁盘队列、基于内存队列。

如果在实例化 Scheduler 时候传入 jobdir,则使用磁盘队列,否则使用内存队列,默认使用内存队列。

指纹过滤

上面说到,在请求入队之前,首先会通过请求指纹过滤器检查请求是否重复,也就是调用了过滤器的 request_seen

代码语言:javascript复制
def request_seen(self, request):
    # 生成请求指纹
    fp = self.request_fingerprint(request)
    # 请求指纹如果在指纹集合中 则认为重复
    if fp in self.fingerprints:
        return True
    # 不重复则记录此指纹
    self.fingerprints.add(fp)
    # 实例化如果有path则把指纹写入文件
    if self.file:
        self.file.write(fp   os.linesep)

def request_fingerprint(self, request):
    # 调用utils.request的request_fingerprint
    return request_fingerprint(request)

utils.requestrequest_fingerprint 逻辑如下:

代码语言:javascript复制
def request_fingerprint(request, include_headers=None):
    """生成请求指纹"""
    # 指纹生成是否包含headers
    if include_headers:
        include_headers = tuple(to_bytes(h.lower())
                                 for h in sorted(include_headers))
    cache = _fingerprint_cache.setdefault(request, {})
    if include_headers not in cache:
        # 使用sha1算法生成指纹
        fp = hashlib.sha1()
        fp.update(to_bytes(request.method))
        fp.update(to_bytes(canonicalize_url(request.url)))
        fp.update(request.body or b'')
        if include_headers:
            for hdr in include_headers:
                if hdr in request.headers:
                    fp.update(hdr)
                    for v in request.headers.getlist(hdr):
                        fp.update(v)
        cache[include_headers] = fp.hexdigest()
    return cache[include_headers]

这个过滤器先是通过 Request 对象生成一个请求指纹,在这里使用 sha1 算法,并记录到指纹集合,每次请求入队前先到这里验证一下指纹集合,如果已存在,则认为请求重复,则不会重复入队列。

不过如果我想不校验重复,也想重复爬取怎么办?看 enqueue_request 的第一行判断,仅需将 Request 实例的 dont_filter 设置为 True 就可以重复抓取此请求,非常灵活。

Scrapy 就是通过此逻辑实现重复请求的过滤,默认情况下,重复请求是不会进行重复抓取的。

下载请求

请求第一次进来后,肯定是不重复的,那么则会正常进入调度器队列。之后下一次调度,再次调用 _next_request_from_scheduler 方法,此时调用调度器的 next_request 方法,就是从调度器队列中取出一个请求,这次就要开始进行网络下载了,也就是调用 _download

代码语言:javascript复制
def _download(self, request, spider):
    # 下载请求
    slot = self.slot
    slot.add_request(request)
    def _on_success(response):
        # 成功回调 结果必须是Request或Response
        assert isinstance(response, (Response, Request))
        if isinstance(response, Response):
            # 如果下载后结果为Response 返回Response
            response.request = request
            logkws = self.logformatter.crawled(request, response, spider)
            logger.log(*logformatter_adapter(logkws), extra={'spider': spider})
            self.signals.send_catch_log(signal=signals.response_received, 
                response=response, request=request, spider=spider)
        return response

    def _on_complete(_):
        # 此次下载完成后 继续进行下一次调度
        slot.nextcall.schedule()
        return _

    # 调用Downloader进行下载
    dwld = self.downloader.fetch(request, spider)
    # 注册成功回调
    dwld.addCallbacks(_on_success)
    # 结束回调
    dwld.addBoth(_on_complete)
    return dwld

在进行网络下载时,调用了 Downloaderfetch

代码语言:javascript复制
def fetch(self, request, spider):
    def _deactivate(response):
        # 下载结束后删除此记录
        self.active.remove(request)
        return response
    # 下载前记录处理中的请求
    self.active.add(request)
    # 调用下载器中间件download 并注册下载成功的回调方法是self._enqueue_request
    dfd = self.middleware.download(self._enqueue_request, request, spider)
    # 注册结束回调
    return dfd.addBoth(_deactivate)

这里调用下载器中间件的 download,并注册下载成功的回调方法是 _enqueue_request,来看下载方法:

代码语言:javascript复制
def download(self, download_func, request, spider):
    @defer.inlineCallbacks
    def process_request(request):
        # 如果下载器中间件有定义process_request 则依次执行
        for method in self.methods['process_request']:
            response = yield method(request=request, spider=spider)
            assert response is None or isinstance(response, (Response, Request)), 
                    'Middleware %s.process_request must return None, Response or Request, got %s' % 
                    (six.get_method_self(method).__class__.__name__, response.__class__.__name__)
            # 如果下载器中间件有返回值 直接返回此结果
            if response:
                defer.returnValue(response)
        # 如果下载器中间件没有返回值,则执行注册进来的方法 也就是Downloader的_enqueue_request
        defer.returnValue((yield download_func(request=request,spider=spider)))

    @defer.inlineCallbacks
    def process_response(response):
        assert response is not None, 'Received None in process_response'
        if isinstance(response, Request):
            defer.returnValue(response)

        # 如果下载器中间件有定义process_response 则依次执行
        for method in self.methods['process_response']:
            response = yield method(request=request, response=response,
                                    spider=spider)
            assert isinstance(response, (Response, Request)), 
                'Middleware %s.process_response must return Response or Request, got %s' % 
                (six.get_method_self(method).__class__.__name__, type(response))
            if isinstance(response, Request):
                defer.returnValue(response)
        defer.returnValue(response)

    @defer.inlineCallbacks
    def process_exception(_failure):
        exception = _failure.value
        # 如果下载器中间件有定义process_exception 则依次执行
        for method in self.methods['process_exception']:
            response = yield method(request=request, exception=exception,
                                    spider=spider)
            assert response is None or isinstance(response, (Response, Request)), 
                'Middleware %s.process_exception must return None, Response or Request, got %s' % 
                (six.get_method_self(method).__class__.__name__, type(response))
            if response:
                defer.returnValue(response)
        defer.returnValue(_failure)

    # 注册执行、错误、回调方法
    deferred = mustbe_deferred(process_request, request)
    deferred.addErrback(process_exception)
    deferred.addCallback(process_response)
    return deferred

在下载过程中,首先找到所有定义好的下载器中间件,包括内置定义好的,也可以自己扩展下载器中间件,下载前先依次执行 process_request,可对 Request 进行加工、处理、校验等操作,然后发起真正的网络下载,也就是第一个参数 download_func,在这里是 Downloader_enqueue_request 方法:

下载成功后回调 Downloader_enqueue_request

代码语言:javascript复制
def _enqueue_request(self, request, spider):
    # 加入下载请求队列
    key, slot = self._get_slot(request, spider)
    request.meta['download_slot'] = key

    def _deactivate(response):
        slot.active.remove(request)
        return response

    slot.active.add(request)
    deferred = defer.Deferred().addBoth(_deactivate)
    # 下载队列
    slot.queue.append((request, deferred))
    # 处理下载队列
    self._process_queue(spider, slot)
    return deferred
    
def _process_queue(self, spider, slot):
    if slot.latercall and slot.latercall.active():
        return

    # 如果延迟下载参数有配置 则延迟处理队列
    now = time()
    delay = slot.download_delay()
    if delay:
        penalty = delay - now   slot.lastseen
        if penalty > 0:
            slot.latercall = reactor.callLater(penalty, self._process_queue, spider, slot)
            return

    # 处理下载队列
    while slot.queue and slot.free_transfer_slots() > 0:
        slot.lastseen = now
        # 从下载队列中取出下载请求
        request, deferred = slot.queue.popleft()
        # 开始下载
        dfd = self._download(slot, request, spider)
        dfd.chainDeferred(deferred)
        # 延迟
        if delay:
            self._process_queue(spider, slot)
            break
            
def _download(self, slot, request, spider):
    # 注册方法 调用handlers的download_request
    dfd = mustbe_deferred(self.handlers.download_request, request, spider)

    # 注册下载完成回调方法
    def _downloaded(response):
        self.signals.send_catch_log(signal=signals.response_downloaded,
                                    response=response,
                                    request=request,
                                    spider=spider)
        return response
    dfd.addCallback(_downloaded)

    slot.transferring.add(request)

    def finish_transferring(_):
        slot.transferring.remove(request)
        # 下载完成后调用_process_queue
        self._process_queue(spider, slot)
        return _

    return dfd.addBoth(finish_transferring)

这里也维护了一个下载队列,可根据配置达到延迟下载的要求。真正发起下载请求是调用了 self.handlers.download_request

代码语言:javascript复制
def download_request(self, request, spider):
    # 获取请求的scheme
    scheme = urlparse_cached(request).scheme
    # 根据scheeme获取下载处理器
    handler = self._get_handler(scheme)
    if not handler:
        raise NotSupported("Unsupported URL scheme '%s': %s" %
                           (scheme, self._notconfigured[scheme]))
    # 开始下载 并返回结果
    return handler.download_request(request, spider)
    
def _get_handler(self, scheme):
    # 根据scheme获取对应的下载处理器
    # 配置文件中定义好了http、https、ftp等资源的下载处理器
    if scheme in self._handlers:
        return self._handlers[scheme]
    if scheme in self._notconfigured:
        return None
    if scheme not in self._schemes:
        self._notconfigured[scheme] = 'no handler available for that scheme'
        return None

    path = self._schemes[scheme]
    try:
        # 实例化下载处理器
        dhcls = load_object(path)
        dh = dhcls(self._crawler.settings)
    except NotConfigured as ex:
        self._notconfigured[scheme] = str(ex)
        return None
    except Exception as ex:
        logger.error('Loading "%(clspath)s" for scheme "%(scheme)s"',
                     {"clspath": path, "scheme": scheme},
                     exc_info=True,  extra={'crawler': self._crawler})
        self._notconfigured[scheme] = str(ex)
        return None
    else:
        self._handlers[scheme] = dh
    return self._handlers[scheme]

下载前,先通过解析 requestscheme 来获取对应的下载处理器,默认配置文件中定义的下载处理器如下:

代码语言:javascript复制
DOWNLOAD_HANDLERS_BASE = {
    'file': 'scrapy.core.downloader.handlers.file.FileDownloadHandler',
    'http': 'scrapy.core.downloader.handlers.http.HTTPDownloadHandler',
    'https': 'scrapy.core.downloader.handlers.http.HTTPDownloadHandler',
    's3': 'scrapy.core.downloader.handlers.s3.S3DownloadHandler',
    'ftp': 'scrapy.core.downloader.handlers.ftp.FTPDownloadHandler',
}

然后调用 download_request 方法,完成网络下载,这里不再详细讲解每个处理器的实现,简单来说,你可以把它想象成封装好的网络下载库,输入URL,它会给你输出下载结果,这样方便理解。

在下载过程中,如果发生异常情况,则会依次调用下载器中间件的 process_exception 方法,每个中间件只需定义自己的异常处理逻辑即可。

如果下载成功,则会依次执行下载器中间件的 process_response 方法,每个中间件可以进一步处理下载后的结果,最终返回。

这里值得提一下,process_request 方法是每个中间件顺序执行的,而 process_responseprocess_exception 方法是每个中间件倒序执行的,具体可看一下 DownaloderMiddlewareManager_add_middleware 方法,就可以明白是如何注册这个方法链的。

拿到最终的下载结果后,再回到 ExecuteEngine_next_request_from_scheduler 中,会看到调用了 _handle_downloader_output,也就是处理下载结果的逻辑:

代码语言:javascript复制
def _handle_downloader_output(self, response, request, spider):
    # 下载结果必须是Request、Response、Failure其一
    assert isinstance(response, (Request, Response, Failure)), response
    # 如果是Request 则再次调用crawl 执行Scheduler的入队逻辑
    if isinstance(response, Request):
        self.crawl(response, spider)
        return
    # 如果是Response或Failure 则调用scraper的enqueue_scrape进一步处理
    # 主要是和Spiders和Pipeline交互
    d = self.scraper.enqueue_scrape(response, request, spider)
    d.addErrback(lambda f: logger.error('Error while enqueuing downloader output',
                                        exc_info=failure_to_exc_info(f),
                                        extra={'spider': spider}))
    return d

拿到下载结果后,主要分 2 个逻辑:

  • 如果返回的是 Request 实例,则直接再次放入 Scheduler 请求队列
  • 如果返回的是是 ResponseFailure 实例,则调用 Scraperenqueue_scrape 方法,做进一步处理

处理下载结果

请求入队逻辑不用再说,前面已经讲过。现在主要看 Scraperenqueue_scrape,看Scraper 组件是如何处理后续逻辑的:

代码语言:javascript复制
def enqueue_scrape(self, response, request, spider):
    # 加入Scrape处理队列
    slot = self.slot
    dfd = slot.add_response_request(response, request)
    def finish_scraping(_):
        slot.finish_response(response, request)
        self._check_if_closing(spider, slot)
        self._scrape_next(spider, slot)
        return _
    dfd.addBoth(finish_scraping)
    dfd.addErrback(
        lambda f: logger.error('Scraper bug processing %(request)s',
                               {'request': request},
                               exc_info=failure_to_exc_info(f),
                               extra={'spider': spider}))
    self._scrape_next(spider, slot)
    return dfd

def _scrape_next(self, spider, slot):
    while slot.queue:
        # 从Scraper队列中获取一个待处理的任务
        response, request, deferred = slot.next_response_request_deferred()
        self._scrape(response, request, spider).chainDeferred(deferred)

def _scrape(self, response, request, spider):
    assert isinstance(response, (Response, Failure))
    # 调用_scrape2继续处理
    dfd = self._scrape2(response, request, spider)
    # 注册异常回调
    dfd.addErrback(self.handle_spider_error, request, response, spider)
    # 出口回调
    dfd.addCallback(self.handle_spider_output, request, response, spider)
    return dfd

def _scrape2(self, request_result, request, spider):
    # 如果结果不是Failure实例 则调用爬虫中间件管理器的scrape_response
    if not isinstance(request_result, Failure):
        return self.spidermw.scrape_response(
            self.call_spider, request_result, request, spider)
    else:
        # 直接调用call_spider
        dfd = self.call_spider(request_result, request, spider)
        return dfd.addErrback(
            self._log_download_errors, request_result, request, spider)

首先把请求和响应加入到 Scraper 的处理队列中,然后从队列中获取到任务,如果不是异常结果,则调用爬虫中间件管理器scrape_response 方法:

代码语言:javascript复制
def scrape_response(self, scrape_func, response, request, spider):
    fname = lambda f:'%s.%s' % (
            six.get_method_self(f).__class__.__name__,
            six.get_method_function(f).__name__)

    def process_spider_input(response):
        # 执行一系列爬虫中间件的process_spider_input
        for method in self.methods['process_spider_input']:
            try:
                result = method(response=response, spider=spider)
                assert result is None, 
                        'Middleware %s must returns None or ' 
                        'raise an exception, got %s ' 
                        % (fname(method), type(result))
            except:
                return scrape_func(Failure(), request, spider)
        # 执行完中间件的一系列process_spider_input方法后 执行call_spider
        return scrape_func(response, request, spider)

    def process_spider_exception(_failure):
        # 执行一系列爬虫中间件的process_spider_exception
        exception = _failure.value
        for method in self.methods['process_spider_exception']:
            result = method(response=response, exception=exception, spider=spider)
            assert result is None or _isiterable(result), 
                'Middleware %s must returns None, or an iterable object, got %s ' % 
                (fname(method), type(result))
            if result is not None:
                return result
        return _failure

    def process_spider_output(result):
        # 执行一系列爬虫中间件的process_spider_output
        for method in self.methods['process_spider_output']:
            result = method(response=response, result=result, spider=spider)
            assert _isiterable(result), 
                'Middleware %s must returns an iterable object, got %s ' % 
                (fname(method), type(result))
        return result

    # 执行process_spider_input
    dfd = mustbe_deferred(process_spider_input, response)
    # 注册异常回调
    dfd.addErrback(process_spider_exception)
    # 注册出口回调
    dfd.addCallback(process_spider_output)
    return dfd

有没有感觉套路很熟悉?与上面下载器中间件调用方式非常相似,也调用一系列的前置方法,再执行真正的处理逻辑,最后执行一系列的后置方法。

回调爬虫

接下来看一下,Scrapy 是如何执行我们写好的爬虫逻辑的,也就是 call_spider 方法,这里回调我们写好的爬虫类:

代码语言:javascript复制
def call_spider(self, result, request, spider):
    # 回调爬虫模块
    result.request = request
    dfd = defer_result(result)
    # 注册回调方法 取得request.callback 如果未定义则调用爬虫模块的parse方法
    dfd.addCallbacks(request.callback or spider.parse, request.errback)
    return dfd.addCallback(iterate_spider_output)

看到这里,你应该更熟悉,平时我们写的最多的爬虫代码,parse 则是第一个回调方法。之后爬虫类拿到下载结果,就可以定义下载后的 callback 方法,也是在这里进行回调执行的。

处理输出

在与爬虫类交互完成之后,Scraper 调用了 handle_spider_output 方法处理爬虫的输出结果:

代码语言:javascript复制
def handle_spider_output(self, result, request, response, spider):
    # 处理爬虫输出结果
    if not result:
        return defer_succeed(None)
    it = iter_errback(result, self.handle_spider_error, request, response, spider)
    # 注册_process_spidermw_output
    dfd = parallel(it, self.concurrent_items,
        self._process_spidermw_output, request, response, spider)
    return dfd

def _process_spidermw_output(self, output, request, response, spider):
    # 处理Spider模块返回的每一个Request/Item
    if isinstance(output, Request):
        # 如果结果是Request 再次入Scheduler的请求队列
        self.crawler.engine.crawl(request=output, spider=spider)
    elif isinstance(output, (BaseItem, dict)):
        # 如果结果是BaseItem/dict
        self.slot.itemproc_size  = 1
        # 调用Pipeline的process_item
        dfd = self.itemproc.process_item(output, spider)
        dfd.addBoth(self._itemproc_finished, output, response, spider)
        return dfd
    elif output is None:
        pass
    else:
        typename = type(output).__name__
        logger.error('Spider must return Request, BaseItem, dict or None, '
                     'got %(typename)r in %(request)s',
                     {'request': request, 'typename': typename},
                     extra={'spider': spider})

执行完我们自定义的解析逻辑后,解析方法可返回新的 RequestBaseItem 实例。

如果是新的请求,则再次通过 Scheduler 进入请求队列,如果是 BaseItem 实例,则调用 Pipeline 管理器,依次执行 process_item。我们想输出结果时,只需要定义 Pepeline 类,然后重写这个方法就可以了。

ItemPipeManager 处理逻辑:

代码语言:javascript复制
class ItemPipelineManager(MiddlewareManager):

    component_name = 'item pipeline'

    @classmethod
    def _get_mwlist_from_settings(cls, settings):
        return build_component_list(settings.getwithbase('ITEM_PIPELINES'))

    def _add_middleware(self, pipe):
        super(ItemPipelineManager, self)._add_middleware(pipe)
        if hasattr(pipe, 'process_item'):
            self.methods['process_item'].append(pipe.process_item)

    def process_item(self, item, spider):
        # 依次调用Pipeline的process_item
        return self._process_chain('process_item', item, spider)

可以看到 ItemPipeManager 也是一个中间件,和之前下载器中间件管理器和爬虫中间件管理器类似,如果子类有定义 process_item,则依次执行它。

执行完之后,调用 _itemproc_finished

代码语言:javascript复制
def _itemproc_finished(self, output, item, response, spider):
    self.slot.itemproc_size -= 1
    if isinstance(output, Failure):
        ex = output.value
        # 如果在Pipeline处理中抛DropItem异常 忽略处理结果
        if isinstance(ex, DropItem):
            logkws = self.logformatter.dropped(item, ex, response, spider)
            logger.log(*logformatter_adapter(logkws), extra={'spider': spider})
            return self.signals.send_catch_log_deferred(
                signal=signals.item_dropped, item=item, response=response,
                spider=spider, exception=output.value)
        else:
            logger.error('Error processing %(item)s', {'item': item},
                         exc_info=failure_to_exc_info(output),
                         extra={'spider': spider})
    else:
        logkws = self.logformatter.scraped(output, response, spider)
        logger.log(*logformatter_adapter(logkws), extra={'spider': spider})
        return self.signals.send_catch_log_deferred(
            signal=signals.item_scraped, item=output, response=response,
            spider=spider)

这里可以看到,如果想在 Pipeline 中丢弃某个结果,直接抛出 DropItem 异常即可,Scrapy 会进行对应的处理。

到这里,抓取结果会根据自定义的输出类,然后输出到指定位置,而新的 Request 则会再次进入请求队列,等待引擎下一次调度,也就是再次调用 ExecutionEngine_next_request,直至请求队列没有新的任务,整个程序退出。

CrawlerSpider

以上,基本上整个核心抓取流程就讲完了。

这里再简单说一下 CrawlerSpider 类,我们平时用的也比较多,它其实就是继承了 Spider 类,然后重写了 parse 方法(这也是继承此类不要重写此方法的原因),并结合 Rule 规则类,来完成 Request 的自动提取逻辑。

Scrapy 提供了这个类方便我们更快速地编写爬虫代码,我们也可以基于此类进行再次封装,让我们的爬虫代码写得更简单。

由此我们也可看出,Scrapy 的每个模块的实现都非常纯粹,每个组件都通过配置文件定义连接起来,如果想要扩展或替换,只需定义并实现自己的处理逻辑即可,其他模块均不受任何影响,所以我们也可以看到,业界有非常多的 Scrapy 插件,都是通过此机制来实现的。

总结

这篇文章的代码量较多,也是 Scrapy 最为核心的抓取流程,如果你能把这块逻辑搞清楚了,那对 Scrapy 开发新的插件,或者在它的基础上进行二次开发也非常简单了。

总结一下整个抓取流程,还是用这两张图表示再清楚不过:

Scrapy 整体给我的感觉是,虽然它只是个单机版的爬虫框架,但我们可以非常方便地编写插件,或者自定义组件替换默认的功能,从而定制化我们自己的爬虫,最终可以实现一个功能强大的爬虫框架,例如分布式、代理调度、并发控制、可视化、监控等功能,它的灵活度非常高。

0 人点赞