简介:以keras书中案例,讲述构建电影评论情感分类模型。
1.定义问题,收集数据
使用消极、积极两类电影评论集,构建对情感分类模型,并后续用于预测。由于只有两类,因此是一个二分类模型。
原始数据采用keras库中的imdb数据集,它包含来自互联网电影数据库(IMDB)的50 000 条严重两极分化的评论。数据集被分为用于训练的25 000 条评论与用于测试的25 000 条评论,训练集和测试集都包含50% 的正面评论和50% 的负面评论。
代码语言:javascript复制from keras.datasets import imdb
# 为什么限定为使用常见的前10000个词汇呢
# 防止词向量过大
(train_data, train_labels), (test_data, test_labels) = imdb.load_data(num_words=10000)
通过内置字典,还原回评论。
代码语言:javascript复制# word_index is a dictionary mapping words to an integer index
word_index = imdb.get_word_index()
# We reverse it, mapping integer indices to words
reverse_word_index = dict([(value, key) for (key, value) in word_index.items()])
# We decode the review; note that our indices were offset by 3
# because 0, 1 and 2 are reserved indices for "padding", "start of sequence", and "unknown".
decoded_review = ' '.join([reverse_word_index.get(i-3, '?') for i in train_data[0]])
原始数据集为整数序列,需要将列表转换为张量。将整数序列进行One-hot编码。
代码语言:javascript复制import numpy as np
def vectorize_sequences(sequences, dimension=10000):
# Create an all-zero matrix of shape (len(sequences), dimension)
results = np.zeros((len(sequences), dimension))
for i, sequence in enumerate(sequences):
# 切片赋值,传入数值列
results[i, sequence] = 1. # set specific indices of results[i] to 1s
return results
# Our vectorized training data
x_train = vectorize_sequences(train_data)
# Our vectorized test data
x_test = vectorize_sequences(test_data)
x_test.shape #(25000, 10000)
转换标签数据类型
代码语言:javascript复制# Our vectorized labels
y_train = np.asarray(train_labels).astype('float32')
y_test = np.asarray(test_labels).astype('float32')
2.构建网络
使用全连接神经网络,中间层一般使用relu作为激活函数,二元分类末端使用sigmoid激活函数,最终输出为一个概率值。
代码语言:javascript复制from keras import models
from keras import layers
model = models.Sequential()
model.add(layers.Dense(16, activation='relu', input_shape=(10000,)))
model.add(layers.Dense(16, activation='relu'))
model.add(layers.Dense(1, activation='sigmoid'))
3.定义优化器和损失函数
代码语言:javascript复制model.compile(optimizer='rmsprop',
loss='binary_crossentropy',
metrics=['binary_accuracy'])
4.构建训练集和验证集
代码语言:javascript复制x_val = x_train[:10000]
partial_x_train = x_train[10000:]
y_val = y_train[:10000]
partial_y_train = y_train[10000:]
5.开始训练,设置提前中断。在第8个回合停止了训练。
代码语言:javascript复制path_checkpoint = "model_checkpoint.h5"
es_callback = keras.callbacks.EarlyStopping(monitor="val_loss", min_delta=0, patience=5)
# 使用ModelCheckpoint回调EarlyStopping函数定期保存检查点,并使用该回调函数在验证损失不再改善时中断训练。
modelckpt_callback = keras.callbacks.ModelCheckpoint(
monitor="val_loss",
filepath=path_checkpoint,
verbose=1,
save_weights_only=True,
save_best_only=True,
)
history = model.fit(partial_x_train,
partial_y_train,
epochs=20,
batch_size=512,
validation_data=(x_val, y_val),
callbacks=[es_callback, modelckpt_callback])
6.可视化输出模型训练效果
代码语言:javascript复制history_dict = history.history
history_dict.keys()
import matplotlib.pyplot as plt
acc = history.history['binary_accuracy']
val_acc = history.history['val_binary_accuracy']
loss = history.history['loss']
val_loss = history.history['val_loss']
epochs = range(1, len(acc) 1)
# "bo" is for "blue dot"
plt.plot(epochs, loss, 'bo', label='Training loss')
# b is for "solid blue line"
plt.plot(epochs, val_loss, 'b', label='Validation loss')
plt.title('Training and validation loss')
plt.xlabel('Epochs')
plt.ylabel('Loss')
plt.legend()
plt.show()
代码语言:javascript复制plt.clf() # clear figure
acc_values = history_dict['binary_accuracy']
val_acc_values = history_dict['val_binary_accuracy']
plt.plot(epochs, acc, 'bo', label='Training acc')
plt.plot(epochs, val_acc, 'b', label='Validation acc')
plt.title('Training and validation accuracy')
plt.xlabel('Epochs')
plt.ylabel('Loss')
plt.legend()
plt.show()
7.对测试集进行测试,最终效果精确度约为86%。
代码语言:javascript复制# 评分 [0.38946253061294556, 0.8613200187683105]
results = model.evaluate(x_test, y_test)
小结:
使用keras构建了简单的全连接神经网络情感分论模型。
下一步,构建更复杂的网络使模型更复杂已找到恰到拟合的界限。如,增加网络节点,层数(开头增加embedding层,中间增加隐藏层)。如用其他网络模型如LSTM适合处理序列问题。