来自 | 专知
链接 | mp.weixin.qq.com/s/auKfgSqgGEHfQsUNZ3g2Gg
编辑 | 机器学习与推荐算法
推荐系统作为人工智能的一个重要应用,是最普遍的计算机辅助系统之一,帮助用户找到潜在的兴趣项目。近年来,人工智能应用的公平性问题引起了研究人员的广泛关注。这些方法大多假定实例独立,并设计复杂的模型来消除敏感信息,以促进公平。然而,推荐系统与这些方法有很大的不同,因为用户和商品自然形成一个用户-商品二部图,并且在图结构中相互协作。在本文中,我们提出了一种新的基于图的技术来保证任何推荐模型的公平性。这里的公平性要求指的是在用户建模过程中不暴露敏感特性集。具体来说,给定任何推荐模型的原始嵌入,我们学习一组过滤器,这些过滤器将每个用户和每个物品的原始嵌入转换为一个基于敏感特征集的过滤嵌入空间。对于每个用户,这种转换是在以用户为中心的图的对抗学习下实现的,以便在过滤后的用户嵌入和该用户的子图结构之间模糊每个敏感特征。最后,大量的实验结果清楚地表明了我们所提出的模型在公平推荐方面的有效性。
https://github.com/newlei/FairGo