利用Transformer来进行目标检测和语义分割

2021-04-02 09:50:21 浏览数 (1)

介绍

这次介绍的是Facebook AI的一篇文章“End-to-End Object Detection with Transformers

恰好最近Transformer也比较热门,这里就介绍一下如何利用Transformer来进行目标检测以及语义分割。

关于Transformer,可以参考我的这篇文章。

这里我简要地介绍一下Transformer,这是一个用于序列到序列建模的模型架构,被广泛应用于自然语言翻译等领域。Transformer抛弃了以往对序列建模的RNN形式的网络架构,引入了注意力机制,实现了不错的序列建模以及变换能力。

大致架构以及流程

DETR的架构

如上图所示,这里面主要分为两个部分:

  • Backbone:主要是CNN,用来抽取高级语义特征的
  • Encoder-Decoder:将高级语义特征利用并给出目标预测

更为细节地,给出如下的架构

架构细节

目标检测的效果

目标检测效果

如上图所示,可以看到DETR的计算次数不算多,但是FPS也不算高,只能算中规中矩。

那么语义分割呢?

这里给出关于语义分割的大致架构,如下图所示:

语义分割架构

注意到,图中所描述的,边界框嵌入(Box Embedding)实质上就是decoder的输出(在FFN之前)。 然后使用一个多头部注意力的机制,这个机制实质上是对Q,K,V进行多次的线性变换,在这里面,K和V是Encoder的输入,Q是decoder的输出。 其中M是多头部注意力的头部数量。

之后,通过一个简单的CNN,得到一个Mask矩阵,用来生成语义分割的结果。

语义分割结果分析

语义分割结果

可以看到比起PanopticFPN 来说,效果的提升有限,特别是AP并不佳,表现一般。

结论

文章将Transformer应用到了目标检测以及语义分割的领域,取得了不错的效果,但是性能上相较于FastRCNN类似架构的方法,并没有明显的提升,但显现出这种序列模型不错的扩展能力。用一个架构解决多种问题,统一化模型的目标指日可待。

0 人点赞