使用IDEA编写Spark程序(4)

2021-04-13 11:04:59 浏览数 (1)

1、pom.xml

●创建Maven项目并补全目录、配置pom.xml

代码语言:javascript复制
		<?xml version="1.0" encoding="UTF-8"?>
	<project xmlns="http://maven.apache.org/POM/4.0.0"
	         xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
	         xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/xsd/maven-4.0.0.xsd">
	    <modelVersion>4.0.0</modelVersion>
		 
    <groupId>cn.itcast</groupId>
    <artifactId>SparkDemo</artifactId>
    <version>1.0-SNAPSHOT</version>
 
    <!-- 指定仓库位置,依次为aliyun、cloudera和jboss仓库 -->
    <repositories>
        <repository>
            <id>aliyun</id>
            <url>http://maven.aliyun.com/nexus/content/groups/public/</url>
        </repository>
        <repository>
            <id>cloudera</id>
            <url>https://repository.cloudera.com/artifactory/cloudera-repos/</url>
        </repository>
        <repository>
            <id>jboss</id>
            <url>http://repository.jboss.com/nexus/content/groups/public</url>
        </repository>
    </repositories>
    <properties>
        <maven.compiler.source>1.8</maven.compiler.source>
        <maven.compiler.target>1.8</maven.compiler.target>
        <encoding>UTF-8</encoding>
        <scala.version>2.11.8</scala.version>
        <scala.compat.version>2.11</scala.compat.version>
        <hadoop.version>2.7.4</hadoop.version>
        <spark.version>2.2.0</spark.version>
    </properties>
    <dependencies>
        <dependency>
            <groupId>org.scala-lang</groupId>
            <artifactId>scala-library</artifactId>
            <version>${scala.version}</version>
        </dependency>
        <dependency>
            <groupId>org.apache.spark</groupId>
            <artifactId>spark-core_2.11</artifactId>
            <version>${spark.version}</version>
        </dependency>
        <dependency>
            <groupId>org.apache.spark</groupId>
            <artifactId>spark-sql_2.11</artifactId>
            <version>${spark.version}</version>
        </dependency>
        <dependency>
            <groupId>org.apache.spark</groupId>
            <artifactId>spark-hive_2.11</artifactId>
            <version>${spark.version}</version>
        </dependency>
        <dependency>
            <groupId>org.apache.spark</groupId>
            <artifactId>spark-hive-thriftserver_2.11</artifactId>
            <version>${spark.version}</version>
        </dependency>
        <dependency>
            <groupId>org.apache.spark</groupId>
            <artifactId>spark-streaming_2.11</artifactId>
            <version>${spark.version}</version>
        </dependency>
        <!-- <dependency>
             <groupId>org.apache.spark</groupId>
             <artifactId>spark-streaming-kafka-0-8_2.11</artifactId>
             <version>${spark.version}</version>
         </dependency>-->
        <dependency>
            <groupId>org.apache.spark</groupId>
            <artifactId>spark-streaming-kafka-0-10_2.11</artifactId>
            <version>${spark.version}</version>
        </dependency>
        <dependency>
            <groupId>org.apache.spark</groupId>
            <artifactId>spark-sql-kafka-0-10_2.11</artifactId>
            <version>${spark.version}</version>
        </dependency>
 
        <!--<dependency>
            <groupId>org.apache.hadoop</groupId>
            <artifactId>hadoop-client</artifactId>
            <version>2.6.0-mr1-cdh5.14.0</version>
        </dependency>
        <dependency>
            <groupId>org.apache.hbase</groupId>
            <artifactId>hbase-client</artifactId>
            <version>1.2.0-cdh5.14.0</version>
        </dependency>
        <dependency>
            <groupId>org.apache.hbase</groupId>
            <artifactId>hbase-server</artifactId>
            <version>1.2.0-cdh5.14.0</version>
        </dependency>-->
 
        <dependency>
            <groupId>org.apache.hadoop</groupId>
            <artifactId>hadoop-client</artifactId>
            <version>2.7.4</version>
        </dependency>
        <dependency>
            <groupId>org.apache.hbase</groupId>
            <artifactId>hbase-client</artifactId>
            <version>1.3.1</version>
        </dependency>
        <dependency>
            <groupId>org.apache.hbase</groupId>
            <artifactId>hbase-server</artifactId>
            <version>1.3.1</version>
        </dependency>
        <dependency>
            <groupId>com.typesafe</groupId>
            <artifactId>config</artifactId>
            <version>1.3.3</version>
        </dependency>
        <dependency>
            <groupId>mysql</groupId>
            <artifactId>mysql-connector-java</artifactId>
            <version>5.1.38</version>
        </dependency>
    </dependencies>
 
    <build>
        <sourceDirectory>src/main/scala</sourceDirectory>
        <testSourceDirectory>src/test/scala</testSourceDirectory>
        <plugins>
            <!-- 指定编译java的插件 -->
            <plugin>
                <groupId>org.apache.maven.plugins</groupId>
                <artifactId>maven-compiler-plugin</artifactId>
                <version>3.5.1</version>
            </plugin>
            <!-- 指定编译scala的插件 -->
            <plugin>
                <groupId>net.alchim31.maven</groupId>
                <artifactId>scala-maven-plugin</artifactId>
                <version>3.2.2</version>
                <executions>
                    <execution>
                        <goals>
                            <goal>compile</goal>
                            <goal>testCompile</goal>
                        </goals>
                        <configuration>
                            <args>
                                <arg>-dependencyfile</arg>
                                <arg>${project.build.directory}/.scala_dependencies</arg>
                            </args>
                        </configuration>
                    </execution>
                </executions>
            </plugin>
            <plugin>
                <groupId>org.apache.maven.plugins</groupId>
                <artifactId>maven-surefire-plugin</artifactId>
                <version>2.18.1</version>
                <configuration>
                    <useFile>false</useFile>
                    <disableXmlReport>true</disableXmlReport>
                    <includes>
                        <include>**/*Test.*
                        **/*Suite.*</include>
                    </includes>
                </configuration>
            </plugin>
            <plugin>
                <groupId>org.apache.maven.plugins</groupId>
                <artifactId>maven-shade-plugin</artifactId>
                <version>2.3</version>
                <executions>
                    <execution>
                        <phase>package</phase>
                        <goals>
                            <goal>shade</goal>
                        </goals>
                        <configuration>
                            <filters>
                                <filter>
                                    <artifact>*:*</artifact>
                                    <excludes>
                                        <exclude>META-INF/*.SF
                                        META-INF/*.DSA
                                        META-INF/*.RSA

●maven-assembly-plugin和maven-shade-plugin的区别

代码语言:javascript复制
https://blog.csdn.net/lisheng19870305/article/details/88300951

2、本地运行

代码语言:javascript复制
package cn.itcast.sparkhello

import org.apache.spark.rdd.RDD
import org.apache.spark.{SparkConf, SparkContext}


object WordCount {
  def main(args: Array[String]): Unit = {
    //1.创建SparkContext
    val config = new SparkConf().setAppName("wc").setMaster("local[*]")
    val sc = new SparkContext(config)
sc.setLogLevel("WARN")
    //2.读取文件
    //A Resilient Distributed Dataset (RDD)弹性分布式数据集
    //可以简单理解为分布式的集合,但是spark对它做了很多的封装,
    //让程序员使用起来就像操作本地集合一样简单,这样大家就很happy了
    val fileRDD: RDD[String] = sc.textFile("D:\授课\190429\资料\data\words.txt")
    //3.处理数据
    //3.1对每一行按空切分并压平形成一个新的集合中装的一个个的单词
    //flatMap是对集合中的每一个元素进行操作,再进行压平
    val wordRDD: RDD[String] = fileRDD.flatMap(_.split(" "))
    //3.2每个单词记为1
    val wordAndOneRDD: RDD[(String, Int)] = wordRDD.map((_,1))
    //3.3根据key进行聚合,统计每个单词的数量
    //wordAndOneRDD.reduceByKey((a,b)=>a b)
    //第一个_:之前累加的结果
    //第二个_:当前进来的数据
    val wordAndCount: RDD[(String, Int)] = wordAndOneRDD.reduceByKey(_ _)
    //4.收集结果
    val result: Array[(String, Int)] = wordAndCount.collect()
    result.foreach(println)
  }
}

3、集群运行

代码语言:javascript复制
●修改代码



package cn.itcast.sparkhello

import org.apache.spark.rdd.RDD
import org.apache.spark.{SparkConf, SparkContext}


object WordCount {
  def main(args: Array[String]): Unit = {
    //1.创建SparkContext
    val config = new SparkConf().setAppName("wc")//.setMaster("local[*]") 
    val sc = new SparkContext(config)
    sc.setLogLevel("WARN")
    //2.读取文件
    //A Resilient Distributed Dataset (RDD)弹性分布式数据集
    //可以简单理解为分布式的集合,但是spark对它做了很多的封装,
    //让程序员使用起来就像操作本地集合一样简单,这样大家就很happy了
    val fileRDD: RDD[String] = sc.textFile(args(0)) //文件输入路径
    //3.处理数据
    //3.1对每一行按空切分并压平形成一个新的集合中装的一个个的单词
    //flatMap是对集合中的每一个元素进行操作,再进行压平
    val wordRDD: RDD[String] = fileRDD.flatMap(_.split(" "))
    //3.2每个单词记为1
    val wordAndOneRDD: RDD[(String, Int)] = wordRDD.map((_,1))
    //3.3根据key进行聚合,统计每个单词的数量
    //wordAndOneRDD.reduceByKey((a,b)=>a b)
    //第一个_:之前累加的结果
    //第二个_:当前进来的数据
    val wordAndCount: RDD[(String, Int)] = wordAndOneRDD.reduceByKey(_ _)
    wordAndCount.saveAsTextFile(args(1))//文件输出路径
   //4.收集结果
   //val result: Array[(String, Int)] = wordAndCount.collect()
   //result.foreach(println)
  }
}

4、打包上传

●执行命令提交到Spark-HA集群

代码语言:javascript复制
/export/servers/spark-2.2.0-bin-2.6.0-cdh5.14.0/bin/spark-submit 
--class cn.itcast.sparkhello.WordCount 
--master spark://node01:7077,node02:7077 
--executor-memory 1g 
--total-executor-cores 2 
/root/wc.jar 
hdfs://node01:8020/aa.txt 
hdfs://node01:8020/cc

●执行命令提交到YARN集群

代码语言:javascript复制
/export/servers/spark-2.2.0-bin-2.6.0-cdh5.14.0/bin/spark-submit 
--class cn.itcast.sparkhello.WordCount 
--master yarn 
--deploy-mode cluster 
--driver-memory 1g 
--executor-memory 1g 
--executor-cores 2 
--queue default 
/root/wc.jar 
hdfs://node01:8020/wordcount/input/words.txt 
hdfs://node01:8020/wordcount/output5

Java8版[了解]

代码语言:javascript复制
import org.apache.spark.SparkConf;
import org.apache.spark.api.java.JavaPairRDD;
import org.apache.spark.api.java.JavaRDD;
import org.apache.spark.api.java.JavaSparkContext;
import scala.Tuple2;

import java.util.Arrays;

public class WordCount_Java {
    public static void main(String[] args){
        SparkConf conf = new SparkConf().setAppName("wc").setMaster("local[*]");
        JavaSparkContext jsc = new JavaSparkContext(conf);
        JavaRDD<String> fileRDD = jsc.textFile("D:\授课\190429\资料\data\words.txt");
        JavaRDD<String> wordRDD = fileRDD.flatMap(s -> Arrays.asList(s.split(" ")).iterator());
        JavaPairRDD<String, Integer> wordAndOne = wordRDD.mapToPair(w -> new Tuple2<>(w, 1));
        JavaPairRDD<String, Integer> wordAndCount = wordAndOne.reduceByKey((a, b) -> a   b);
        //wordAndCount.collect().forEach(t->System.out.println(t));
        wordAndCount.collect().forEach(System.out::println);
        //函数式编程的核心思想:行为参数化!
    }
}

铁铁们,下期给大家分享SparkCore

0 人点赞