YOLODet最新算法的目标检测开发套件,优化到部署

2021-04-22 11:14:56 浏览数 (1)

YOLODet-PyTorch是端到端基于pytorch框架复现yolo最新算法的目标检测开发套件,旨在帮助开发者更快更好地完成检测模型的训练、精度速度优化到部署全流程。YOLODet-PyTorch以模块化的设计实现了多种主流YOLO目标检测算法,并且提供了丰富的数据增强、网络组件、损失函数等模块。

目前检测库下模型均要求使用PyTorch 1.5及以上版本或适当的develop版本。


代码 获取方式:

分享本文到朋友圈

关注微信公众号 datayx 然后回复 目标检测 即可获取。

YOLODet简介

特性:

  • 模型丰富: YOLODet提供了丰富的模型,涵盖最新YOLO检测算法的复现,包含YOLOv5、YOLOv4、PP-YOLO、YOLOv3等YOLO系列目标检测算法。
  • 高灵活度: YOLODet通过模块化设计来解耦各个组件,基于配置文件可以轻松地搭建各种检测模型。

支持的模型:

  • YOLOv5(s,m,l,x)
  • YOLOv4(标准版,sam版)
  • PP-YOLO
  • YOLOv3

更多的Backone:

  • DarkNet
  • CSPDarkNet
  • ResNet
  • YOLOv5Darknet

数据增强方法:

  • Mosaic
  • MixUp
  • Resize
  • LetterBox
  • RandomCrop
  • RandomFlip
  • RandomHSV
  • RandomBlur
  • RandomNoise
  • RandomAffine
  • RandomTranslation
  • Normalize
  • ImageToTensor

损失函数支持:

  • bbox loss (IOU,GIOU,DIOU,CIOU)
  • confidence loss(YOLOv4,YOLOv5,PP-YOLO)
  • IOU_Aware_Loss(PP-YOLO)
  • FocalLoss

训练技巧支持:

  • 指数移动平均
  • 预热
  • 梯度剪切
  • 梯度累计更新
  • 多尺度训练
  • 学习率调整:Fixed,Step,Exp,Poly,Inv,Consine
  • Label Smooth
  • 强烈说明 通过实验对比发现YOLOv5的正负样本划分定义和损失函数定义,使得模型收敛速度较快,远超原yolo系列对正负样本的划分和损失定义。对于如果卡资源不充足,想在短时间内收敛模型,可采用yolov5的正负样本划分和损失函数定义,相关参数为yolo_loss_type=yolov5
  • 额外补充 YOLOv5对于正样本的定义:在不同尺度下只要真框和给定锚框的的比值在4倍以内,该锚框即可负责预测该真值框。并根据gx,gy在grid中心点位置的偏移量会额外新增两个grid坐标来预测。通过这一系列操作,增加了正样本数量,加速模型收敛速度。而YOLO原系列对于真框,在不同尺度下只有在该尺度下IOU交并集最大的锚框负责预测该真框,其他锚框不负责,所以由于较少的正样本量,模型收敛速度较慢。

扩展特性:

  • Group Norm
  • Modulated Deformable Convolution
  • Focus
  • Spatial Pyramid Pooling
  • FPN-PAN
  • coord conv
  • drop block
  • SAM

代码结构说明

安装说明

安装和数据集准备请参考 INSTALL.md 。

要求

  • python3.7 (不支持python2)
  • PyTorch 1.5或更高版本
  • CUDA 10.0或更高
  • NCCL 2
  • GCC(G ) 4.9或以上

快速开始

请参阅 GETTING_STARTED.md 了解YOLODet的基本用法。

模型训练

YOLODetection提供执行单卡多卡的训练。所有输出(日志文件和检查点)将保存到工作目录中。

这是由配置文件中的work_dir指定的。

*Important*: 配置文件的默认学习率是1个gpu和小批次大小为2,累计到64个批次大小进行梯度更新。

根据余弦败火规则,如果你使用不同的GPU或每个GPU的图像,你需要设置与批大小成比例的学习率,配置文件中的batch_sizesubdivisions确定。

使用GPU训练

可选参数:

  • --validate(强烈建议):在训练epoch期间每一次k(默认值是1,可以像这样修改this)来执行评估。
  • --work_dir ${WORK_DIR}:覆盖配置文件中指定的工作目录。
  • --device ${device}: 指定device训练, 0 or 0,1,2,3 or cpu,默认全部使用。
  • --resume_from ${CHECKPOINT_FILE}:从以前训练的checkpoints文件恢复训练。
  • --multi-scale:多尺度缩放,尺寸范围为训练图片尺寸 /- 50%

resume_fromload_from的不同:

resume_from加载模型权重和优化器状态,并且训练也从指定的检查点继续训练。它通常用于恢复意外中断的训练。 load_from只加载模型权重,并且训练从epoch 0开始。它通常用于微调。

用于测试图像的高级api接口

下面是一个构建模型和测试给定图像的示例。

预训练模型

YOLO

  • 重要说明: 由于本人资源有限,只有单张1080Ti的显卡可供训练,完整训练完训练周期较长。为了说明本框架可训练,推断和测试。本次给出的预训练模型只是训练24个epoch的模型,损失值还在下降中,未训练充分,仅供大家参考。如有条件的开发者可完成本次训练,并希望你能把训练好的预训练模型提供出来,供大家使用。我也会在重要位置进行声明和感谢。
  • 效果图
  • YOLOv5-l:

0 人点赞