一文搞定 Flink Job 的运行过程

2021-04-25 14:37:43 浏览数 (1)

背景

之前我们知道了Flink 是如何生成 StreamGraph 以及 如何生成 job 和 如何生成Task,现在我们通过 Flink Shell 将他们串起来,这样我们就学习了从写代码开始到 Flink 运行 task 的整个过程是怎么样的。

正文

我们经常通过 Flink Shell 提交代码,如 flink run -p 2 -m yarn-cluster -ynm test -c test ./test-1.0-SNAPSHOT.jar "file" "./test.properties"&通过 flink shell 我们可以知道 org.apache.flink.client.cli.CliFrontend 为整个 Flink Job 的入口类

代码语言:javascript复制
/**
	 * Submits the job based on the arguments.
	 */
	public static void main(final String[] args) {
		EnvironmentInformation.logEnvironmentInfo(LOG, "Command Line Client", args);

		// 1. find the configuration directory
		final String configurationDirectory = getConfigurationDirectoryFromEnv();

		// 2. load the global configuration
		final Configuration configuration = GlobalConfiguration.loadConfiguration(configurationDirectory);

		// 3. load the custom command lines
		final List<CustomCommandLine<?>> customCommandLines = loadCustomCommandLines(
			configuration,
			configurationDirectory);

		try {
			final CliFrontend cli = new CliFrontend(
				configuration,
				customCommandLines);

			SecurityUtils.install(new SecurityConfiguration(cli.configuration));
			int retCode = SecurityUtils.getInstalledContext()
					.runSecured(() -> cli.parseParameters(args));
			System.exit(retCode);
		}
		catch (Throwable t) {
			final Throwable strippedThrowable = ExceptionUtils.stripException(t, UndeclaredThrowableException.class);
			LOG.error("Fatal error while running command line interface.", strippedThrowable);
			strippedThrowable.printStackTrace();
			System.exit(31);
		}
	}

main 很简单,主要就两步,发现并加载配置文件,加载并解析命令。在解析命令的过程当中,如果传入的命令是 run,则可以一直追踪到 executeProgram 方法

代码语言:javascript复制
protected void executeProgram(PackagedProgram program, ClusterClient<?> client, int parallelism) throws ProgramMissingJobException, ProgramInvocationException {
		logAndSysout("Starting execution of program");
		final JobSubmissionResult result = client.run(program, parallelism);
		......
	}

通过 client run 方法来执行,最终调用我们传入的主方法( 通过 -c 参数),然后就开始执行用户代码了,首先会构建 StreamGraph ,最终调用 StreamContextEnvironment execute(String jobName) 方法

代码语言:javascript复制
@Override
	public JobExecutionResult execute(String jobName) throws Exception {
		
		Preconditions.checkNotNull(jobName, "Streaming Job name should not be null.");

		StreamGraph streamGraph = this.getStreamGraph();
		streamGraph.setJobName(jobName);

		transformations.clear();

		// execute the programs 存在 -d 时
		if (ctx instanceof DetachedEnvironment) {
			LOG.warn("Job was executed in detached mode, the results will be available on completion.");
			((DetachedEnvironment) ctx).setDetachedPlan(streamGraph);
			return DetachedEnvironment.DetachedJobExecutionResult.INSTANCE;
		} else {
			return ctx
				.getClient()
				.run(streamGraph, ctx.getJars(), ctx.getClasspaths(), ctx.getUserCodeClassLoader(), ctx.getSavepointRestoreSettings())
				.getJobExecutionResult();
		}
	}

然后

代码语言:javascript复制
public JobSubmissionResult run(FlinkPlan compiledPlan,
			List<URL> libraries, List<URL> classpaths, ClassLoader classLoader, SavepointRestoreSettings savepointSettings)
			throws ProgramInvocationException {
		// 构建 jobGraph
		JobGraph job = getJobGraph(flinkConfig, compiledPlan, libraries, classpaths, savepointSettings);
		//将 job 提交至 cluster 上
		return submitJob(job, classLoader);
	}

主要就是构建 jobGraph ,关于构建 jobGraph 的细节可以参考 如何构建 job ,构建成功之后就开始提交 job 了。我们以 MiniCluster 为例

代码语言:javascript复制
@Override
	public JobSubmissionResult submitJob(JobGraph jobGraph, ClassLoader classLoader) throws ProgramInvocationException {
		final CompletableFuture<JobSubmissionResult> jobSubmissionResultFuture = submitJob(jobGraph);
		......
	}
代码语言:javascript复制
public CompletableFuture<JobSubmissionResult> submitJob(JobGraph jobGraph) {
		final CompletableFuture<DispatcherGateway> dispatcherGatewayFuture = getDispatcherGatewayFuture();
		
		// we have to allow queued scheduling in Flip-6 mode because we need to request slots
		// from the ResourceManager
		jobGraph.setAllowQueuedScheduling(true);
		
		final CompletableFuture<InetSocketAddress> blobServerAddressFuture = createBlobServerAddress(dispatcherGatewayFuture);
		
		// cache jars and files
		final CompletableFuture<Void> jarUploadFuture = uploadAndSetJobFiles(blobServerAddressFuture, jobGraph);
		
		final CompletableFuture<Acknowledge> acknowledgeCompletableFuture = jarUploadFuture
			.thenCombine(
				dispatcherGatewayFuture,
				// 这里真正 submit 操作,交给了 dispatcher 去执行
				(Void ack, DispatcherGateway dispatcherGateway) -> dispatcherGateway.submitJob(jobGraph, rpcTimeout))
			.thenCompose(Function.identity());
		
		return acknowledgeCompletableFuture.thenApply(
			(Acknowledge ignored) -> new JobSubmissionResult(jobGraph.getJobID()));
	}

接下来就到了 job 正式运行的时候了

代码语言:javascript复制
private CompletableFuture<Void> runJob(JobGraph jobGraph) {
		Preconditions.checkState(!jobManagerRunnerFutures.containsKey(jobGraph.getJobID()));

		//创建 jobManagerRunner 同时也会创建 jobMaster,在创建 JobMaster 的时候构建了 ExecutionGraph
		final CompletableFuture<JobManagerRunner> jobManagerRunnerFuture = createJobManagerRunner(jobGraph);

		jobManagerRunnerFutures.put(jobGraph.getJobID(), jobManagerRunnerFuture);

		// start jobManagerRunner 同时也启动了 jobMaster 等一系列 service,然后就开始调度 executionGraph,execution.deploy task.start
		return jobManagerRunnerFuture
			.thenApply(FunctionUtils.uncheckedFunction(this::startJobManagerRunner))
			.thenApply(FunctionUtils.nullFn())
			.whenCompleteAsync(
				(ignored, throwable) -> {
					if (throwable != null) {
						jobManagerRunnerFutures.remove(jobGraph.getJobID());
					}
				},
				getMainThreadExecutor());
	}

这部分内容与 如何构建Job 是一致的,省略若干,具体可以参考 如何构建 job ,需要强调一点就是当 执行到 ExecutionGraph 的 scheduleForExecution方法时

代码语言:javascript复制
// 调度 execution
	public void scheduleForExecution() throws JobException {

		assertRunningInJobMasterMainThread();

		final long currentGlobalModVersion = globalModVersion;

		// 会启动 startCheckpointScheduler
		if (transitionState(JobStatus.CREATED, JobStatus.RUNNING)) {
			......
	}

会启动 CheckpointScheduler 从而开始出发 checkpoint。

接下来就开始部署,可以参考 如何构建 job 和 如何生成Task

至此为止,从写代码到代码的计算执行,整个过程我们都已经学习清楚了。

总结

0 人点赞