Elasticsearch使用:父-子关系文档(下)

2021-10-15 16:34:51 浏览数 (1)

简介

父子文档在理解上来说,可以理解为一个关联查询,有些类似MySQL中的JOIN查询,通过某个字段关系来关联。父子文档与嵌套文档主要的区别在于,父子文档的父对象和子对象都是独立的文档,而嵌套文档中都在同一个文档中存储。如下图所示:

构建父-子索引

代码语言:javascript复制
新建Setting:

PUT /test_doctor
{
  "settings": {
    "number_of_shards": 1,
    "analysis": {
      "analyzer": {
        "index_ansj_analyzer": {
          "type": "custom",
          "tokenizer": "index_ansj",
          "filter": [
            "my_synonym",
            "asciifolding"
          ]
        },
        "comma": {
          "type": "pattern",
          "pattern": ","
        },
        "shingle_analyzer": {
          "type": "custom",
          "tokenizer": "standard",
          "filter": [
            "lowercase",
            "shingle_filter"
          ]
        }
      },
      "filter": {
        "my_synonym": {
          "type": "synonym",
          "synonyms_path": "analysis/synonym.txt"
        },
        "shingle_filter": {
          "type": "shingle",
          "min_shingle_size": 2,
          "max_shingle_size": 2,
          "output_unigrams": false
        }
      }
    }
  }
} 

新建Mapping:

PUT /test_doctor/_mapping/_doc
{
  "_doc": {
    "properties": {
      "date": {
        "type": "date"
      },
      "name": {
        "type": "text",
        "fields": {
          "keyword": {
            "type": "keyword"
          }
        }
      },
      "comment": {
        "type": "text",
        "fields": {
          "keyword": {
            "type": "keyword"
          }
        }
      },
      "age": {
        "type": "long"
      },
      "body": {
        "type": "text",
        "analyzer":"index_ansj_analyzer"
        "fields": {
          "keyword": {
            "type": "keyword"
          }
        }
      },
      "title": {
        "type": "text",
        "analyzer":"index_ansj_analyzer",
        "fields": {
          "keyword": {
            "type": "keyword"
          }
        }
      },
      "relation": {  # 这个relation相当于一个普通的字段名
        "type": "join",
        "relations": { # 该relations部分定义了文档内的一组可能的关系,每个关系是父名和子名
          "question": "answer"
        }
      }
    }
  }
}
备注:question和answer是自定义的一种关系

这段代码建立了一个test_doctor的索引,其中relation是一个用于join的字段,type为join,关系relations为:父为question, 子为answer。 至于建立一父多子关系,只需要改为数组即可:"question":["answer","comment"]

插入数据

代码语言:javascript复制
插入父文档数据,需要指定上文索引结构中的relation为question
PUT test_doctor/_doc/1
{
    "title":"这是一篇文章",
    "body":"这是一篇文章,从哪里说起呢? ... ...",
    "relation":"question"  # 这个relation是一个普通的字段,value值为question表示为父文档
}
PUT test_doctor/_doc/2
{
    "title":"这是一篇小说",
    "body":"这是一篇小说,从哪里说起呢? ... ...",
    "relation":"question"  # 这个relation是一个普通的字段,value值为question表示为父文档
}

注意也可以写成这样"relation":{"name":"question"}


插入子文档,需要在请求地址上使用routing参数指定是谁的子文档,并且指定索引结构中的relation关系
PUT test_doctor/_doc/3?routing=1
{
    "name":"张三",
    "comment":"写的不错",
    "age":28,
    "date":"2020-05-04",
    "relation":{  # 这个relation是一个普通的字段,value值为answer表示为子文档
        "name":"answer",
        "parent":1
    }
}
PUT test_doctor/_doc/4?routing=1
{
    "name":"李四",
    "comment":"写的很好",
    "age":20,
    "date":"2020-05-04",
    "relation":{  # 这个relation是一个普通的字段,value值为answer表示为子文档
        "name":"answer",
        "parent":1
    }
}
PUT test_doctor/_doc/5?routing=2
{
    "name":"王五",
    "comment":"这是一篇非常棒的小说",
    "age":31,
    "date":"2020-05-01",
    "relation":{  # 这个relation是一个普通的字段,value值为answer表示为子文档
        "name":"answer",
        "parent":2
    }
}
PUT test_doctor/_doc/6?routing=2
{
    "name":"小六",
    "comment":"这是一篇非常棒的小说",
    "age":31,
    "date":"2020-05-01",
    "relation":{  # 这个relation是一个普通的字段,value值为answer表示为子文档
        "name":"answer",
        "parent":2
    }
}

父文档:
Map drugMap = Maps.newHashMap();
drugMap.put("id", "2"); // 
drugMap.put("title", "这是一篇小说"); // 
drugMap.put("body", "这是一篇小说,从哪里说起呢? ... ...");
drugMap.put("relation", "question");// 固定写法

子文档:
Map maps = Maps.newHashMap();
maps.put("name", "answer");  // 固定写法
maps.put("parent", "2");   // 这里的2是指的父文档所绑定的id

Map doctorTeamMap = Maps.newHashMap();
doctorTeamMap.put("id", "6");  
doctorTeamMap.put("name", "小六"); 
doctorTeamMap.put("comment", "这是一篇非常棒的小说"); 
doctorTeamMap.put("age", "31");  
doctorTeamMap.put("date", "2020-05-01");
doctorTeamMap.put("relation", maps);    // 固定写法

Java代码实现:
/**
 * 使用BulkProcessor批量更新数据
 * @param indexName 索引名称
 * @param jsonString    索引的document数据
 */
public boolean addIndexBulk(String indexName, Map<String, Object> jsonString, String id) {

    IndexRequest request = new IndexRequest(indexName, "_doc", id);
    request.source(jsonString, XContentType.JSON);
    dataBulkProcessor.add(request);

    return true;
}

/**
 * 添加路由
 */
public boolean addIndexBulk(String indexName, Map<String, Object> jsonString, String id, String routing) {

    IndexRequest request = new IndexRequest(indexName, "_doc", id);
    request.source(jsonString, XContentType.JSON);
    request.routing(routing);
    dataBulkProcessor.add(request);

    return true;
}

查询数据

关系字段查询

Es会自动生成一个额外的用于表示关系的字段:field#question

代码语言:javascript复制
我们可以通过以下方式查询:
POST test_doctor/_search
{
 "script_fields": {
    "parent": {
      "script": {
         "source": "doc['relation#question']" 
      }
    }
  }
}
响应结果:
{
  "took" : 124,
  "timed_out" : false,
  "_shards" : {
    "total" : 1,
    "successful" : 1,
    "skipped" : 0,
    "failed" : 0
  },
  "hits" : {
    "total" : 7,
    "max_score" : 1.0,
    "hits" : [
      {
        "_index" : "test_doctor",
        "_type" : "_doc",
        "_id" : "1",
        "_score" : 1.0,
        "fields" : {
          "parent" : [
            "1"
          ]
        }
      },
      {
        "_index" : "test_doctor",
        "_type" : "_doc",
        "_id" : "2",
        "_score" : 1.0,
        "_routing" : "1",
        "fields" : {
          "parent" : [
            "1"
          ]
        }
      },
      {
        "_index" : "test_doctor",
        "_type" : "_doc",
        "_id" : "3",
        "_score" : 1.0,
        "_routing" : "1",
        "fields" : {
          "parent" : [
            "1"
          ]
        }
      },
      {
        "_index" : "test_doctor",
        "_type" : "_doc",
        "_id" : "4",
        "_score" : 1.0,
        "_routing" : "1",
        "fields" : {
          "parent" : [
            "1"
          ]
        }
      },
      {
        "_index" : "test_doctor",
        "_type" : "_doc",
        "_id" : "5",
        "_score" : 1.0,
        "fields" : {
          "parent" : [
            "5"
          ]
        }
      },
      {
        "_index" : "test_doctor",
        "_type" : "_doc",
        "_id" : "6",
        "_score" : 1.0,
        "_routing" : "5",
        "fields" : {
          "parent" : [
            "5"
          ]
        }
      },
      {
        "_index" : "test_doctor",
        "_type" : "_doc",
        "_id" : "7",
        "_score" : 1.0,
        "_routing" : "1",
        "fields" : {
          "parent" : [
            "1"
          ]
        }
      }
    ]
  }
}

有_routing字段的说明是子文档,它的parent字段是父文档id,如果没有_routing就是父文档,它的parent指向当前id。

通过parent_id查询子文档

代码语言:javascript复制
通过parent_id query传入父文档id即可
POST test_doctor/_search
{
  "query": {
    "parent_id": { 
      "type": "answer",
      "id": "5"
    }
  }
}


Java API:

//子文档名
String child_type = "answer";
//父文档ID
String id = "5";
//ParentId查询
ParentIdQueryBuilder parentIdQueryBuilder = new ParentIdQueryBuilder(child_type, id);
builder.query(parentIdQueryBuilder);
builder.from(0);
builder.size(10);


通过ID和routing ,访问子文档(不加routing查不到)
GetRequest getRequest = new GetRequest(indexName, child_type);		
//必须指定路由(父ID)
getRequest.routing(id);

通过子文档查询has_child

使用has_child来根据子文档内容查询父文档,其实type就是创建文档时,子文档的标识。

代码语言:javascript复制
查询包含特定子文档的父文档,这是一种很耗性能的查询,尽量少用。它的查询标准格式如下
POST test_doctor/_search
{
  "query": {
    "has_child": {
      "type": "answer",
      "query": {
        "match": {
          "name": "张三"
        }
      },
      "inner_hits": {} # 同时返回父子数据
    }
  }
}

POST test_doctor/_search
{
    "query": {
        "has_child" : {
            "type" : "answer",
            "query" : {
                "match_all" : {}
            },
            "max_children": 10, //可选,符合查询条件的子文档最大返回数
            "min_children": 2, //可选,符合查询条件的子文档最小返回数
            "score_mode" : "min"
        }
    }
}

如果也想根据父文档的字段进行过滤,采用后置过滤器的方法
POST test_doctor/_search
{
  "query": {
    "has_child": {
      "type": "answer",
      "query": {
        "match": {
          "name": "张三"
        }
      },
      "inner_hits": {}
    }
  },
  "post_filter": {
    "bool": {
      "must": [
        {
          "term": {
            "title": {
              "value": "文章",
              "boost": 1
            }
          }
        }
      ]
    }
  }
}

Java API:
// 子文档查询条件
QueryBuilder matchQuery = QueryBuilders.termQuery("name", "张三");
// 是否计算评分
ScoreMode scoreMode = ScoreMode.Total;
HasChildQueryBuilder childQueryBuilder = new HasChildQueryBuilder("answer", matchQuery, scoreMode);
childQueryBuilder.innerHit(new InnerHitBuilder());
builder.query(childQueryBuilder);
builder.postFilter(boolQueryBuilder);

通过父文档查询has_parent

根据父文档查询子文档 has_parent。

代码语言:javascript复制
{
  "query": {
    "has_parent": {
      "parent_type":"question",
      "query": {
        "match": {
          "title": "这是一篇文章"
        }
      }
    }
  }
}

// 是否计算评分
score = true;
HasParentQueryBuilder hasParentQueryBuilder = new HasParentQueryBuilder("question", boolQueryBuilder, score);
builder.query(hasParentQueryBuilder);
builder.postFilter(QueryBuilders.termQuery("indextype", "answer")); // 子文档的过滤条件

0 人点赞