文章转载自【肉娃娃】,阅读原文
- 1. 总览
- 2. 可配置逻辑单元
- 2.1 6 输入查找表(LUT6)
- 2.2 选择器(MUX)
- 2.3 进位链(Carry Chain)
- 2.4 触发器(Flip-Flop)
- 参考文献
一直以来,觉得自己关于 FPGA 方面,摸不到“低”——对底层架构认识不清,够不着“高”——没真正独立做过 NB 的应用,如高速、复杂协议或算法、神经网络加速等高大上的应用,所以能力和认识水平都处于中间水平。这段时间做时序优化,感觉心有余而力不足了,可能要触及手动布局布线了,打开 Device 布局图才开始有兴趣探究一些底层结构的东西。
看吧,资源已经用了80%的A7 200芯片
可能翻开任何一本有关FPGA的书籍,上来就会介绍FPGA的历史,原理,内部结构什么的,大部分人看着都极其枯燥,常常要么直接略过,要么就看一遍,久了也就忘记了(部分靠翻译文档的书作者该好好反思)。我硬着头皮去弥补之前缺失的一些基础知识,结合Xilinx A7 芯片,总结一下自己的收获。
1. 总览
平台:Vivado
芯片:XC7A200
FPGA 主要有六部分组成:可编程输入输出单元(IO)、可编程逻辑单元(CLB)、完整的时钟管理、嵌入块状RAM、布线资源、内嵌的底层功能单元和内嵌专用硬件模块。其中最为主要的是可编程输出输出单元、可编程逻辑单元和布线资源。
放大,这些就是内部资源,主要是逻辑单元和块状 RAM 及一些内嵌功能单元
再放大,这些逻辑单元的内部结构也出来了,像大型“停车场”
2. 可配置逻辑单元
可配置逻辑单元(Configurable Logic Block,CLB)在 FPGA 中最为丰富,由两个 SLICE 组成。由于 SLICE 有 SLICEL(L:Logic)和 SLICEM(M:Memory)之分,因此 CLB 可分为 CLBLL 和 CLBLM 两类。
点击内部的逻辑单元,通过阴影区别包含的范围,你可以清晰的看到结构划分的层级。在旁边窗口可以清晰的看到选中部分的属性(Properties)。
来,再放大,放大到一个 SLICEL,如下图所示。
SLICEL 和 SLICEM 内部都包含 4 个 6 输入查找表(Look-Up-Table,LUT6)、3 个数据选择器(MUX)、1 个进位链(Carry Chain)和 8 个触发器(Flip-Flop),下面分部分介绍的时候,时不时可以再回头看这张结构图。
2.1 6 输入查找表(LUT6)
虽然 SLICEL 和 SLICEM 的结构组成一样,但两者更细化的结构上略有不同,区别在于 LUT6 上(如下图所示),从而导致LUT6的功能有所不同(如下表格所示)。
上边的功能可以看到,不论是 SLICEL 还是 SLICEM,他们的 LUT6 都可以作为 ROM 使用,配置为 64x1(占用 1 个 LUT6,64 代表深度,1 代表宽度)、128x1(占用 2 个 LUT6)和 256(占用 4 个 LUT6)的 ROM。
另外既然 SLICEM 中的 M 代表 memory 的意思,所以增加了更多存储功能。可以配置为 RAM,尤其指分布式 RAM。其中 RAM 的写操作为同步,而读操作是异步的,即与时钟信号无关。如果要实现同步读操作,则要额外占用一个触发器,从而增加了意识时钟的延迟(Latency),但提升了系统的性能。
这就解释了为什么我们实现RAM同步读写的时候,读出输出要延迟一个 clk。一个 LUT6 可配置 64x1 的 RAM,当 RAM 的深度大于 64 时,会占用额外的 MUX(F7AMUX,F7BMUX,F8MUX,即一个 SLICE 中的那 3 个 MUX)。
SLICEM 中的 LUT 还可以配置为移位寄存器,每个 LUT6 可实现深度为 32 的移位寄存器,且同一个 SLICEM 中的 LUT6(4个)可级联实现 128 深度的移位寄存器。
2.2 选择器(MUX)
SLICE 中的三个 MUX(Multiplexer:F7AMUX,F7BMUX 和 F8MUX)可以和 LUT6 联合共同实现更大的MUX。事实上,一个 LUT6 可实现 4 选 1 的 MUX。
SLICE 中的 F7MUX(F7AMUX 和 F7BMUX)的输入数据来自于相邻的两个 LUT6 的 O6 端口。
一个 F7MUX 和相邻的两个 LUT6 可实现一个 8 选 1 的 MUX。因此,一个 SLICE 可实现 2 个 8 选 1 的 MUX。
4 个 LUT6、F7AMUX、F7BMUX 和 F8MUX 可实现一个 16 选 1 的 MUX。因此,一个 SLICE 可实现一个 16 选 1 的 MUX。
2.3 进位链(Carry Chain)
进位链用于实现加法和减法运行。就是结构图中,中间那个大的部分,可以看到它内部实际还包含 4 个 MUX 和 4 个 2 输入异或门(XOR)。
异或运算是加法运算中必不可少的运算。
2.4 触发器(Flip-Flop)
每个 SLICE 中有 8 个触发器。这 8 个触发器可分为两大类:4 个只能配置为边沿敏感的 D 触发器(Flip-Flop)和 4 个即可配置为边沿敏感的 D 触发器又可配置为电平敏感的锁存器(Flop & Latch)。当后者被用作锁存器的时候,前者将无法使用。
当这 8 个触发器都用作 D 触发器时,他们的控制端口包括使能端 CE、置位/复位端口 S/R 和时钟端口 CLK 是对应共享的,也就是就是说共用的。 {CE,S/R,CLK}称为触发器的控制集。显然,在具体的设计中,控制集种类越少越好,这样可以提高触发器的利用率。那么怎样减少控制集种类呢?我的理解是:
减少时钟种类,即频率越少越好; 统一规范的设计逻辑,如复位。 S/R端口可配置为同步/异步置位或同步/异步复位,且高有效,因此可形成4种D触发器,如下表所示。
在我们的常规设计中,FDCE 和 FDPE 占了绝大多数。
说到高有效,让我想起了一个大家习以为常,但很少深究的问题:为什么一开始接触 FPGA 的时候,都告诉我们低电平复位?后来查了一些资料,有说从功耗、噪声可靠性方面考虑等等,但是偶然看到 Xilinx 和 Altera 两家芯片的触发器不一样!如下图所示,Xilinx 的触发器是高电平复位,而 Altera 的触发器时低电平复位。所以这也是需要考虑的一点吗?
复位,同步复位、异步复位、同步复位异步释放