源码 反码 补码

2021-05-07 09:47:59 浏览数 (1)

简介

在学习原码, 反码和补码之前, 需要先了解机器数和真值的概念。

机器数

一个数在计算机中的二进制表示形式,  叫做这个数的机器数。机器数是带符号的,在计算机用一个数的最高位存放符号, 正数为0, 负数为1.

比如,十进制中的数 3 ,计算机字长为8位,转换成二进制就是00000011。如果是 -3 ,就是 10000011 。那么,这里的 00000011 和 10000011 就是机器数。

真值

因为第一位是符号位,所以机器数的形式值就不等于真正的数值。例如上面的有符号数 10000011,其最高位1代表负,其真正数值是 -3 而不是形式值131(10000011转换成十进制等于131)。所以,为区别起见,将带符号位的机器数对应的真正数值称为机器数的真值。

例:0000 0001的真值 = 000 0001 = 1,1000 0001的真值 = –000 0001 = –1

原码

原码就是符号位加上真值的绝对值, 即用第一位表示符号, 其余位表示值. 比如如果是8位二进制:

代码语言:javascript复制
[ 1]原 = 0000 0001

[-1]原 = 1000 0001

因为第一位是符号位, 所以8位二进制数的取值范围就是:

代码语言:javascript复制
[1111 1111 , 0111 1111]  => [-127 , 127]

原码是人脑最容易理解和计算的表示方式。

反码

反码的表示方法是:正数的反码是其本身;负数的反码是在其原码的基础上, 符号位不变,其余各个位取反。

代码语言:javascript复制
[ 1] = [00000001]原 = [00000001]反

[-1] = [10000001]原 = [11111110]反

补码

补码的表示方法是:正数的补码就是其本身;负数的补码是在其原码的基础上, 符号位不变, 其余各位取反, 最后 1. (即在反码的基础上 1)。

代码语言:javascript复制
[ 1] = [00000001]原 = [00000001]反 = [00000001]补

[-1] = [10000001]原 = [11111110]反 = [11111111]补

对于负数, 补码表示方式也是人脑无法直观看出其数值的. 通常也需要转换成原码在计算其数值。

原码 反码 补码解析

首先, 因为人脑可以知道第一位是符号位, 在计算的时候我们会根据符号位, 选择对真值区域的加减. (真值的概念在本文最开头). 但是对于计算机, 加减乘数已经是最基础的运算, 要设计的尽量简单. 计算机辨别"符号位"显然会让计算机的基础电路设计变得十分复杂! 于是人们想出了将符号位也参与运算的方法. 我们知道, 根据运算法则减去一个正数等于加上一个负数, 即: 1-1 = 1 (-1) = 0 , 所以机器可以只有加法而没有减法, 这样计算机运算的设计就更简单了。

于是人们开始探索 将符号位参与运算, 并且只保留加法的方法. 首先来看原码:

代码语言:javascript复制
计算十进制的表达式: 1-1 = 0

1 - 1 = 1   (-1) = [00000001]原   [10000001]原 = [10000010]原 = -2

如果用原码表示, 让符号位也参与计算, 显然对于减法来说, 结果是不正确的。这也就是为何计算机内部不使用原码表示一个数。为了解决原码做减法的问题, 出现了反码:

代码语言:javascript复制
计算十进制的表达式: 1-1 = 0

1 - 1 = 1   (-1) = [0000 0001]原   [1000 0001]原= [0000 0001]反   [1111 1110]反 = [1111 1111]反 = [1000 0000]原 = -0

发现用反码计算减法, 结果的真值部分是正确的. 而唯一的问题其实就出现在"0"这个特殊的数值上。虽然人们理解上 0和-0是一样的, 但是0带符号是没有任何意义的。 而且会有[0000 0000]原和[1000 0000]原两个编码表示0。

于是补码的出现,解决了0的符号以及两个编码的问题:

代码语言:javascript复制
1-1 = 1   (-1) = [0000 0001]原   [1000 0001]原 = [0000 0001]补   [1111 1111]补 = [0000 0000]补=[0000 0000]原

这样0用[0000 0000]表示,而以前出现问题的-0则不存在了。而且可以用[1000 0000]表示-128:

代码语言:javascript复制
(-1)   (-127) = [1000 0001]原   [1111 1111]原 = [1111 1111]补   [1000 0001]补 = [1000 0000]补

-1-127的结果应该是-128, 在用补码运算的结果中, [1000 0000]补 就是-128. 但是注意因为实际上是使用以前的-0的补码来表示-128, 所以-128并没有原码和反码表示.(对-128的补码表示[1000 0000]补算出来的原码是[0000 0000]原, 这是不正确的)

使用补码, 不仅仅修复了0的符号以及存在两个编码的问题, 而且还能够多表示一个最低数。这就是为什么8位二进制,使用原码或反码表示的范围为[-127, 127],而使用补码表示的范围为[-128, 127]。

因为机器使用补码,所以对于编程中常用到的32位int类型,可以表示范围是: [-231, 231-1] 因为第一位表示的是符号位。而使用补码表示时又可以多保存一个最小值。

https://www.cnblogs.com/zhangziqiu/archive/2011/03/30/ComputerCode.html

0 人点赞