Unix和Linux操作系统上提供了fork()
系统调用来创建进程,调用fork()
函数的是父进程,创建出的是子进程,子进程是父进程的一个拷贝,但是子进程拥有自己的PID。fork()
函数非常特殊它会返回两次,父进程中可以通过fork()
函数的返回值得到子进程的PID,而子进程中的返回值永远都是0。Python的os模块提供了fork()
函数。由于Windows系统没有fork()
调用,因此要实现跨平台的多进程编程,可以使用multiprocessing模块的Process
类来创建子进程,而且该模块还提供了更高级的封装,例如批量启动进程的进程池(Pool
)、用于进程间通信的队列(Queue
)和管道(Pipe
)等。
下面用一个下载文件的例子来说明使用多进程和不使用多进程到底有什么差别,先看看下面的代码。
代码语言:javascript复制from random import randint
from time import time, sleep
def download_task(filename):
print('开始下载%s...' % filename)
time_to_download = randint(5, 10)
sleep(time_to_download)
print('%s下载完成! 耗费了%d秒' % (filename, time_to_download))
def main():
start = time()
download_task('Python从入门到住院.pdf')
download_task('Peking Hot.avi')
end = time()
print('总共耗费了%.2f秒.' % (end - start))
if __name__ == '__main__':
main()
下面是运行程序得到的一次运行结果。
代码语言:javascript复制开始下载Python从入门到住院.pdf...
Python从入门到住院.pdf下载完成! 耗费了6秒
开始下载Peking Hot.avi...
Peking Hot.avi下载完成! 耗费了7秒
总共耗费了13.01秒.
从上面的例子可以看出,如果程序中的代码只能按顺序一点点的往下执行,那么即使执行两个毫不相关的下载任务,也需要先等待一个文件下载完成后才能开始下一个下载任务,很显然这并不合理也没有效率。接下来我们使用多进程的方式将两个下载任务放到不同的进程中,代码如下所示。
代码语言:javascript复制from multiprocessing import Process
from os import getpid
from random import randint
from time import time, sleep
def download_task(filename):
print('启动下载进程,进程号[%d].' % getpid())
print('开始下载%s...' % filename)
time_to_download = randint(5, 10)
sleep(time_to_download)
print('%s下载完成! 耗费了%d秒' % (filename, time_to_download))
def main():
start = time()
p1 = Process(target=download_task, args=('Python从入门到住院.pdf', ))
p1.start()
p2 = Process(target=download_task, args=('Peking Hot.avi', ))
p2.start()
p1.join()
p2.join()
end = time()
print('总共耗费了%.2f秒.' % (end - start))
if __name__ == '__main__':
main()
在上面的代码中,我们通过Process
类创建了进程对象,通过target
参数我们传入一个函数来表示进程启动后要执行的代码,后面的args
是一个元组,它代表了传递给函数的参数。Process
对象的start
方法用来启动进程,而join
方法表示等待进程执行结束。运行上面的代码可以明显发现两个下载任务“同时”启动了,而且程序的执行时间将大大缩短,不再是两个任务的时间总和。下面是程序的一次执行结果。
启动下载进程,进程号[1530].
开始下载Python从入门到住院.pdf...
启动下载进程,进程号[1531].
开始下载Peking Hot.avi...
Peking Hot.avi下载完成! 耗费了7秒
Python从入门到住院.pdf下载完成! 耗费了10秒
总共耗费了10.01秒.
我们也可以使用subprocess模块中的类和函数来创建和启动子进程,然后通过管道来和子进程通信,这些内容我们不在此进行讲解,有兴趣的读者可以自己了解这些知识。接下来我们将重点放在如何实现两个进程间的通信。我们启动两个进程,一个输出Ping,一个输出Pong,两个进程输出的Ping和Pong加起来一共10个。听起来很简单吧,但是如果这样写可是错的哦。
代码语言:javascript复制from multiprocessing import Process
from time import sleep
counter = 0
def sub_task(string):
global counter
while counter < 10:
print(string, end='', flush=True)
counter = 1
sleep(0.01)
def main():
Process(target=sub_task, args=('Ping', )).start()
Process(target=sub_task, args=('Pong', )).start()
if __name__ == '__main__':
main()
看起来没毛病,但是最后的结果是Ping和Pong各输出了10个,Why?当我们在程序中创建进程的时候,子进程复制了父进程及其所有的数据结构,每个子进程有自己独立的内存空间,这也就意味着两个子进程中各有一个counter
变量,所以结果也就可想而知了。要解决这个问题比较简单的办法是使用multiprocessing模块中的Queue
类,它是可以被多个进程共享的队列,底层是通过管道和信号量(semaphore)机制来实现的,有兴趣的读者可以自己尝试一下。