动态规划-最大的正方形面积

2021-05-21 11:46:32 浏览数 (1)

题目表述

Given a 2D binary matrix filled with 0’s and 1’s, find the largest square containing only 1’s and return its area.

For example, given the following matrix:

1 0 1 0 0 1 0 1 1 1 1 1 1 1 1 1 0 0 1 0

Return 4.

思路

使用动态规划来求解,算法时间复杂度O(n^2)。

dp[i][j] : 以(i, j)为右下角的面积最大的正方形的边长。

初始条件:最上面一行,最左边一列,可以直接得到dp值。

更新公式:matrix[i][j] == ‘0’ – > dp[i][j] = 0

        matrix[i][j] == ‘1’ – > dp[i][j] = min(dp[i – 1][j], dp[i – 1][j – 1], dp[i][j – 1]) 1

代码

C

代码语言:javascript复制
#include<iostream>
#include<vector>
const int _MAX = 10;

using namespace std;

char matrix[_MAX][_MAX];
int dp[_MAX][_MAX];

int min3(int a, int b, int c){
    a = a < b ? a : b;
    return a < c ? a : c;
}

int main(){
    int n, m;
    cin>>n>>m;
    for(int i = 0; i < n; i  ){
        for(int j = 0; j < m; j  ){
            cin>>matrix[i][j];
        }
    }

    
    int res = 0;
    for(int i = 0; i < n; i  ){
        for(int j = 0; j < m; j  ){
            if(matrix[i][j] == 1)dp[i][j] = 1;
            else dp[i][j] = 0;
        }
    }

    for(int i = 1; i < n; i  ){
        for(int j = 1; j < m; j  ){
            if(matrix[i][j] == '1'){
                dp[i][j] = min3(dp[i - 1][j], dp[i][j - 1], dp[i - 1][j - 1])   1;
                res = res > dp[i][j] ? res : dp[i][j];
            }
        }
    }
    cout<<res * res<<endl;
    return 0;
}

/* 
4 5
1 0 1 0 0 
1 0 1 1 1 
1 1 1 1 1 
1 0 0 1 0 
 */

0 人点赞