人工鱼群算法 在一片水域中,鱼往往能自行或尾随其他鱼找到营养物质多的地方,因而鱼生存数目最多的地方一般就是本水域中营养物质最多的地方,人工鱼群算法就是根据这一特点,通过构造人工鱼来模仿鱼群的觅食、聚群及追尾行为,从而实现寻优。 中文名 人工鱼群算法 典型行为觅食行为 特 点 具有较快的收敛速度 停止条件 均方差小于允许的误差。
算法描述 在一片水域中,鱼往往能自行或尾随其他鱼找到营养物质多的地方,因而鱼生存数目最多的地方一般就是本水域中营养物质最多的地方,人工鱼群算法就是根据这一特点,通过构造人工鱼来模仿鱼群的觅食、聚群及追尾行为,从而实现寻优,以下是鱼的几种典型行为: 1)觅食行为:一般情况下鱼在水中随机地自由游动,当发现食物时,则会向食物逐渐增多的方向快速游去。 2)聚群行为:鱼在游动过程中为了保证自身的生存和躲避危害会自然地聚集成群,鱼聚群时所遵守的规则有三条:分隔规则:尽量避免与临近伙伴过于拥挤;对准规则:尽量与临近伙伴的平均方向一致;内聚规则:尽量朝临近伙伴的中心移动。 3)追尾行为:当鱼群中的一条或几条鱼发现食物时,其临近的伙伴会尾随其快速到达食物点。 4)随机行为:单独的鱼在水中通常都是随机游动的,这是为了更大范围地寻找食物点或身边的伙伴。
特点 1)具有较快的收敛速度,可以用于解决有实时性要求的问题; 2)对于一些精度要求不高的场合,可以用它快速的得到一个可行解; 3)不需要问题的严格机理模型,甚至不需要问题的精确描述,这使得它的应用范围得以延伸。
停止条件 1) 判断连续多次所得的均方差小于允许的误差; 2)判断某个区域的人工鱼群的数目达到某个比率; 3)连续多次所获取的值均不能超过已找到的极值。 4)迭代次数达到预设次数
一维函数寻优MATLAB代码:
①main.m
MATLAB
代码语言:javascript复制clc
clear all
close all
tic
figure(1);hold on
ezplot('x*sin(10*pi*x) 2',[-1,2]);
%% 参数设置
fishnum=50; %生成50只人工鱼
MAXGEN=50; %最多迭代次数
try_number=100;%最多试探次数
visual=1; %感知距离
delta=0.618; %拥挤度因子
step=0.1; %步长
%% 初始化鱼群
lb_ub=[-1,2,1];
X=AF_init(fishnum,lb_ub);
LBUB=[];
for i=1:size(lb_ub,1)
LBUB=[LBUB;repmat(lb_ub(i,1:2),lb_ub(i,3),1)];
end
gen=1;
BestY=-1*ones(1,MAXGEN); %每步中最优的函数值
BestX=-1*ones(1,MAXGEN); %每步中最优的自变量
besty=-100; %最优函数值
Y=AF_foodconsistence(X);
while gen<=MAXGEN
fprintf(1,'%dn',gen)
for i=1:fishnum
%% 聚群行为
[Xi1,Yi1]=AF_swarm(X,i,visual,step,delta,try_number,LBUB,Y);
%% 追尾行为
[Xi2,Yi2]=AF_follow(X,i,visual,step,delta,try_number,LBUB,Y);
if Yi1>Yi2
X(:,i)=Xi1;
Y(1,i)=Yi1;
else
X(:,i)=Xi2;
Y(1,i)=Yi2;
end
end
[Ymax,index]=max(Y);
figure(1);
plot(X(1,index),Ymax,'.','color',[gen/MAXGEN,0,0])
if Ymax>besty
besty=Ymax;
bestx=X(:,index);
BestY(gen)=Ymax;
[BestX(:,gen)]=X(:,index);
else
BestY(gen)=BestY(gen-1);
[BestX(:,gen)]=BestX(:,gen-1);
end
gen=gen 1;
end
plot(bestx(1),besty,'ro','MarkerSize',100)
xlabel('x')
ylabel('y')
title('鱼群算法迭代过程中最优坐标移动')
%% 优化过程图
figure
plot(1:MAXGEN,BestY)
xlabel('迭代次数')
ylabel('优化值')
title('鱼群算法迭代过程')
disp(['最优解X:',num2str(bestx,'%1.4f')])
disp(['最优解Y:',num2str(besty,'%1.4f')])
toc
②dist.m
MATLAB
代码语言:javascript复制%计算第i条鱼与所有鱼的位置,包括本身。
function D=dist(Xi,X)
col=size(X,2);
D=zeros(1,col);
for j=1:col
D(j)=norm(Xi-X(:,j));
end
③AF_swarm.m
MATLAB
代码语言:javascript复制function [Xnext,Ynext]=AF_swarm(X,i,visual,step,deta,try_number,LBUB,lastY)
% 聚群行为
%输入:
%X 所有人工鱼的位置
%i 当前人工鱼的序号
%visual 感知范围
%step 最大移动步长
�ta 拥挤度
%try_number 最大尝试次数
%LBUB 各个数的上下限
%lastY 上次的各人工鱼位置的食物浓度
%输出:
%Xnext Xi人工鱼的下一个位置
%Ynext Xi人工鱼的下一个位置的食物浓度
Xi=X(:,i);
D=AF_dist(Xi,X);
index=find(D>0 & D<visual);
nf=length(index);
if nf>0
for j=1:size(X,1)
Xc(j,1)=mean(X(j,index));
end
Yc=AF_foodconsistence(Xc);
Yi=lastY(i);
if Yc/nf>deta*Yi
Xnext=Xi rand*step*(Xc-Xi)/norm(Xc-Xi);
for i=1:length(Xnext)
if Xnext(i)>LBUB(i,2)
Xnext(i)=LBUB(i,2);
end
if Xnext(i)<LBUB(i,1)
Xnext(i)=LBUB(i,1);
end
end
Ynext=AF_foodconsistence(Xnext);
else
[Xnext,Ynext]=AF_prey(Xi,i,visual,step,try_number,LBUB,lastY);
end
else
[Xnext,Ynext]=AF_prey(Xi,i,visual,step,try_number,LBUB,lastY);
end
④AF_prey.m
MATLAB
代码语言:javascript复制function [Xnext,Ynext]=AF_prey(Xi,ii,visual,step,try_number,LBUB,lastY)
%觅食行为
%输入:
%Xi 当前人工鱼的位置
%ii 当前人工鱼的序号
%visual 感知范围
%step 最大移动步长
%try_number 最大尝试次数
%LBUB 各个数的上下限
%lastY 上次的各人工鱼位置的食物浓度
%输出:
%Xnext Xi人工鱼的下一个位置
%Ynext Xi人工鱼的下一个位置的食物浓度
Xnext=[];
Yi=lastY(ii);
for i=1:try_number
Xj=Xi (2*rand(length(Xi),1)-1)*visual;
Yj=AF_foodconsistence(Xj);
if Yi<Yj
Xnext=Xi rand*step*(Xj-Xi)/norm(Xj-Xi);
for i=1:length(Xnext)
if Xnext(i)>LBUB(i,2)
Xnext(i)=LBUB(i,2);
end
if Xnext(i)<LBUB(i,1)
Xnext(i)=LBUB(i,1);
end
end
Xi=Xnext;
break;
end
end
%随机行为
if isempty(Xnext)
Xj=Xi (2*rand(length(Xi),1)-1)*visual;
Xnext=Xj;
for i=1:length(Xnext)
if Xnext(i)>LBUB(i,2)
Xnext(i)=LBUB(i,2);
end
if Xnext(i)<LBUB(i,1)
Xnext(i)=LBUB(i,1);
end
end
end
Ynext=AF_foodconsistence(Xnext);
⑤AF_init.m
MATLAB
代码语言:javascript复制function X=AF_init(Nfish,lb_ub)
%输入:
% Nfish 鱼群大小
% lb_ub 鱼的活动范围
%输出:
% X 产生的初始人工鱼群
% example:
% Nfish=3;
% lb_ub=[-3.0,12.1,1;4.1,5.8,1];
%%这里的lb_ub是2行3列的矩阵,每行中前两个数是范围的上下限,第3个数是在该范围内的数的个数
% X=Inital(Nfish,lb_ub)
%%就是产生[-3.0,12.1]内的数1个,[4.1,5.8]内的数1个
%%两个数一组,这样的数一共Nfish个
row=size(lb_ub,1);
X=[];
for i=1:row
lb=lb_ub(i,1);
ub=lb_ub(i,2);
nr=lb_ub(i,3);
for j=1:nr
X(end 1,:)=lb (ub-lb)*rand(1,Nfish);
end
end
⑥AF_foodconsistence
MATLAB
代码语言:javascript复制function [Y]=AF_foodconsistence(X)
fishnum=size(X,2);
for i=1:fishnum
Y(1,i)=X(i)*sin(10*pi*X(i)) 2;
end
⑦AF_follow.m
MATLAB
代码语言:javascript复制function [Xnext,Ynext]=AF_follow(X,i,visual,step,deta,try_number,LBUB,lastY)
% 追尾行为
%输入:
%X 所有人工鱼的位置
%i 当前人工鱼的序号
%visual 感知范围
%step 最大移动步长
�ta 拥挤度
%try_number 最大尝试次数
%LBUB 各个数的上下限
%lastY 上次的各人工鱼位置的食物浓度
%输出:
%Xnext Xi人工鱼的下一个位置
%Ynext Xi人工鱼的下一个位置的食物浓度
Xi=X(:,i);
D=AF_dist(Xi,X);
index=find(D>0 & D<visual);
nf=length(index);
if nf>0
XX=X(:,index);
YY=lastY(index);
[Ymax,Max_index]=max(YY);
Xmax=XX(:,Max_index);
Yi=lastY(i);
if Ymax/nf>deta*Yi;
Xnext=Xi rand*step*(Xmax-Xi)/norm(Xmax-Xi);
for i=1:length(Xnext)
if Xnext(i)>LBUB(i,2)
Xnext(i)=LBUB(i,2);
end
if Xnext(i)<LBUB(i,1)
Xnext(i)=LBUB(i,1);
end
end
Ynext=AF_foodconsistence(Xnext);
else
[Xnext,Ynext]=AF_prey(X(:,i),i,visual,step,try_number,LBUB,lastY);
end
else
[Xnext,Ynext]=AF_prey(X(:,i),i,visual,step,try_number,LBUB,lastY);
end
⑧AF_dist
MATLAB
代码语言:javascript复制function D=AF_dist(Xi,X)
%计算第i条鱼与所有鱼的位置,包括本身。
%输入:
%Xi 第i条鱼的当前位置
%X 所有鱼的当前位置
% 输出:
%D 第i条鱼与所有鱼的距离
col=size(X,2);
D=zeros(1,col);
for j=1:col
D(j)=norm(Xi-X(:,j));
end
效果
参考文献
Feng Shi. MATLAB 智能算法-30个案例分析[J]. 2015.