Python可视化 | 绘制研究区域DEM地形图

2021-05-28 17:23:38 浏览数 (1)

在往期推文中,我们曾利用nc地形数据tif地形数据png非矢量图等绘制过研究区域DEM地形图,在此不再累述,请感兴趣者在往期推文中自行检索源代码(无脑替换数据即可)。本文则是从全局1分钟网格中以ASCII XYZ格式提取DEM地形数据并绘图:


作图代码如下:

注:请读者参考往期推文并借助basemap&cartopy绘制地图

代码语言:javascript复制
import numpy as np
import matplotlib.pyplot as plt
from scipy.interpolate import griddata
import matplotlib.colors
import pandas as pd
from matplotlib import rcParams
config = {"font.family":'Times New Roman', "font.size": 16, "mathtext.fontset":'stix'}
rcParams.update(config)
class FixPointNormalize(matplotlib.colors.Normalize):
    """ 
    Inspired by https://stackoverflow.com/questions/20144529/shifted-colorbar-matplotlib
    Subclassing Normalize to obtain a colormap with a fixpoint 
    somewhere in the middle of the colormap.
    This may be useful for a `terrain` map, to set the "sea level" 
    to a color in the blue/turquise range. 
    """
    def __init__(self, vmin=None, vmax=None, sealevel=0, col_val = 0.21875, clip=False):
        # sealevel is the fix point of the colormap (in data units)
        self.sealevel = sealevel
        # col_val is the color value in the range [0,1] that should represent the sealevel.
        self.col_val = col_val
        matplotlib.colors.Normalize.__init__(self, vmin, vmax, clip)
    def __call__(self, value, clip=None):
        x, y = [self.vmin, self.sealevel, self.vmax], [0, self.col_val, 1]
        return np.ma.masked_array(np.interp(value, x, y))
# Combine the lower and upper range of the terrain colormap with a gap in the middle
# to let the coastline appear more prominently.
# inspired by https://stackoverflow.com/questions/31051488/combining-two-matplotlib-colormaps
colors_undersea = plt.cm.terrain(np.linspace(0, 0.17, 56))
colors_land = plt.cm.terrain(np.linspace(0.25, 1, 200))
## combine them and build a new colormap
colors = np.vstack((colors_undersea, colors_land))
cut_terrain_map = matplotlib.colors.LinearSegmentedColormap.from_list('cut_terrain', colors)
plt.close('all')
data = pd.read_csv('F:/Rpython/lp33/data/Madagascar_Elevation.csv')
Long = data['lon']; Lat = data['lat']; Elev = data['elev']
tl = 0.5
tw = 0.5
lw = 1.5
S = 30
pts=1000000
[x,y] =np.meshgrid(np.arange(np.min(Long),np.max(Long),0.01),np.arange(np.min(Lat),np.max(Lat),0.01))
z = griddata((Long, Lat), Elev, (x, y), method='linear')
x = np.matrix.flatten(x)
y = np.matrix.flatten(y)
z = np.matrix.flatten(z)
cmap = plt.get_cmap('terrain')
fig,ax = plt.subplots()
norm = FixPointNormalize(sealevel=0,vmax=np.max(z)-400,vmin=np.min(z) 250)
plt.scatter(x,y,1,z,cmap =cut_terrain_map,norm=norm)
cbar = plt.colorbar(label='Elevation above sea level [m]')
cbar.ax.tick_params(size=3,width =1)
cbar.ax.tick_params(which='major',direction='in',bottom=True, top=True, left=False, right=True,length=tl*2.5,width=tw 1.5,color='k')
cbar.outline.set_linewidth(lw)
plt.xlabel('Longitude [°]')
plt.ylabel('Latitude [°]')
plt.gca().set_aspect('equal')
plt.xlim(40,52)
plt.ylim(-10,-28)
plt.gca().invert_yaxis()
plt.yticks([-10,-15,-20,-25])
ax.set_yticks(np.linspace(-28,-10,19), minor=True)
ax.tick_params(colors='k')
ax.spines['top'].set_linewidth(lw)
ax.spines['bottom'].set_linewidth(lw)
ax.spines['right'].set_linewidth(lw)
ax.spines['left'].set_linewidth(lw)
ax.tick_params(which='major',direction='in',bottom=True, top=True, left=True, right=True,length=tl*2,width=tw 1.5,color='k')
ax.minorticks_on()
ax.tick_params(which='minor',direction='in',bottom=True, top=True, left=True, right=True,color='k',length=tl 1,width=tw)
plt.rcParams["font.family"] = "charter"
plt.rcParams.update({'font.size': S})
ax.set_yticks(np.linspace(-28,-10,19), minor=True)
#显示
plt.savefig('F:/Rpython/lp33/plot9.png',dpi=800)
plt.show()

png

0 人点赞