HBASE BufferedMutator 批量写入使用举例与源码解析

2021-06-04 15:55:24 浏览数 (1)

toc

1. 基本介绍

BufferedMutator主要用来异步批量的将数据写入一个hbase表,就像Htable一样。通过Connection获取一个实例。

Map/reduce 任务是BufferedMutator的好的使用案例。Map/Reduce任务获益于batch操作,但是没有留出flush接口。BufferedMutator从Map/Reduce任务接受数据,会依据一些先验性的经验批量提交数据,比如puts堆积的数量,由于批量提交时异步的,所以M/R逻辑不会因为数据的batch提交而阻塞。Map/Reduce 批处理任务每个线程会有一个BufferedMutator。单个BufferedMutator也能够很高效用于大数据量的在线系统,来成批的写puts入hbase表。

2. BufferedMutator使用举例

这里分为以下两个批量写入场景

2.1 单次一张表批量写入
代码语言:txt复制
Configuration conf =  HBaseConfiguration.create();
 conf.set("hbase.zookeeper.quorum", "zookeeperHost");
final BufferedMutator.ExceptionListener listener = new BufferedMutator.ExceptionListener() {
@Override
public void onException(RetriesExhaustedWithDetailsException e, BufferedMutator mutator) {
 for (int i = 0; i < e.getNumExceptions(); i  ) {
        LOG.info("Failed to sent put "   e.getRow(i)   ".");              }
        }
        };
 BufferedMutatorParams params = new BufferedMutatorParams(TABLE)
        .listener(listener);
 params.writeBufferSize(123123L);
        try {
        Connection conn = ConnectionFactory.createConnection(conf);
 BufferedMutator mutator = conn.getBufferedMutator(params);
 Put p = new Put(Bytes.toBytes("someRow"));
 p.addColumn(FAMILY, Bytes.toBytes("someQualifier"), Bytes.toBytes("some value"));
 mutator.mutate(p);
 mutator.close();
 conn.close();
 } catch (IOException e1) {
 // TODO Auto-generated catch block
 e1.printStackTrace();
 }

        }
多次多张表批量写入

可以使用一个Map保存多个Table的连接,这里使用的是线程安全的ConcurrentHashMap,如果是单线程的场景可以换成HashMap以提高效率。

代码语言:txt复制
private static Map<String, BufferedMutator> tableConnectionMgr = new ConcurrentHashMap<>();
private BufferedMutator getTableConnection(String tableName) throws IOException {
    if (tableConnectionMgr.get(tableName) != null) {
        return tableConnectionMgr.get(tableName);
    }
    Connection connection = ConnectionFactory.createConnection(config);
    BufferedMutator table = connection.getBufferedMutator(TableName.valueOf(tableName));
    tableConnectionMgr.put(tableName, table);
    log.info("hbase table: {} connect established!", tableName);
    return tableConnectionMgr.get(tableName);
}

3 源码介绍

3.1 主要类介绍

BufferedMutatorParams

实例化一个BufferedMutator所需要的参数。

主要参数TableName(表名),writeBufferSize(写缓存大小),maxKeyValueSize(最大key-value大小),ExecutorService(执行线程池),ExceptionListener(监听BufferedMutator的异常)。

BufferedMutatorImpl

用来和hbase表交互,类似于Htable,但是意味着批量,异步的puts。通过HConnectionImplementation获得实例,具体方法如下:

代码语言:txt复制
public BufferedMutator getBufferedMutator(BufferedMutatorParams params) {
 if (params.getTableName() == null) {
 throw new IllegalArgumentException("TableName cannot be null.");
 }
 if (params.getPool() == null) {
    params.pool(HTable.getDefaultExecutor(getConfiguration()));
 }
 if (params.getWriteBufferSize() == BufferedMutatorParams.UNSET) {
    params.writeBufferSize(connectionConfig.getWriteBufferSize());
 }
 if (params.getMaxKeyValueSize() == BufferedMutatorParams.UNSET) {
    params.maxKeyValueSize(connectionConfig.getMaxKeyValueSize());
 }
 return new BufferedMutatorImpl(this, rpcCallerFactory, rpcControllerFactory, params);
}

AsyncProcess

AsyncProcess内部维护的有一个线程池,我们的操作会被封装成runnable,然后扔到线程池里执行。这个过程是异步的,直到任务数达到最大值。

HConnectionImplementation

一个集群的链接。通过它可以找到master,定位到regions的分布,保持locations的缓存,并指导如何校准localtions信息。

3.2 源码过程
3.2.1 BufferedMutator构建的过程
  1. 首先是要构建一个HBaseConfiguration
代码语言:txt复制
Configuration conf =  HBaseConfiguration.create();  conf.set("hbase.zookeeper.quorum", "zookeeperHost");
  1. 接着是构建BufferedMutatorParams
代码语言:txt复制
```java
代码语言:txt复制
final BufferedMutator.ExceptionListener listener = new BufferedMutator.ExceptionListener() {
代码语言:txt复制
 @Override
代码语言:txt复制
 public void onException(RetriesExhaustedWithDetailsException e, BufferedMutator mutator) {
代码语言:txt复制
 for (int i = 0; i < e.getNumExceptions(); i  ) {
代码语言:txt复制
 LOG.info("Failed to sent put "   e.getRow(i)   ".");
代码语言:txt复制
 }
代码语言:txt复制
  }
代码语言:txt复制
};
代码语言:txt复制
BufferedMutatorParams params = new BufferedMutatorParams(TABLE)
代码语言:txt复制
    .listener(listener);
代码语言:txt复制
params.writeBufferSize(123);
代码语言:txt复制
```
  1. 最后构建HConnection
代码语言:txt复制
Connection conn = ConnectionFactory.*createConnection*(getConf())
  1. 最后构建BufferMutator
代码语言:txt复制
BufferedMutator mutator = conn.getBufferedMutator(params)
3.2.2 数据发送的过程
  1. 构建put或者Listput
  2. 调用BufferedMutator.mutate方法
  3. 刷写到hbase
代码语言:txt复制
> 刷写到hbase三种方法:
>
代码语言:txt复制
> 一,显式调用BufferedMutator.flush
>
代码语言:txt复制
> 二,发送结束的时候调用BufferedMutator.close
>
代码语言:txt复制
> 三,它根据当前缓存大于了设置的写缓存大小
代码语言:txt复制
while (undealtMutationCount.get() != 0  && currentWriteBufferSize.get() > writeBufferSize) {   backgroundFlushCommits(false); }
代码语言:txt复制
最终都是调用的backgroundFlushCommits方法。
  1. rpc的过程
代码语言:txt复制
入口是backgroundFlushCommits方法。Ap是AsyncProcess的实例。
代码语言:txt复制
ap.submit(tableName, taker, true, null, false);
代码语言:txt复制
首先是构建了一个HashMap,可以通过server找到该server上我们需要的region
代码语言:txt复制
```java
代码语言:txt复制
//可以根据我们的server找到要发送到该server的actions
代码语言:txt复制
Map<ServerName, MultiAction<Row>> actionsByServer =
代码语言:txt复制
 new HashMap<ServerName, MultiAction<Row>>();
代码语言:txt复制
```
代码语言:txt复制
获取所有的region信息,所有region的副本都被包括在内
代码语言:txt复制
```java
代码语言:txt复制
RegionLocations locs = connection.locateRegion(
代码语言:txt复制
    tableName, r.getRow(), true, true, RegionReplicaUtil.DEFAULT_REPLICA_ID);
代码语言:txt复制
```
代码语言:txt复制
获取默认的region信息此时一个region只会返回一个默认id指定的位置。
代码语言:txt复制
```java
代码语言:txt复制
loc = locs.getDefaultRegionLocation();
代码语言:txt复制
```
代码语言:txt复制
将row操作转变为action,并加入actionsByServer 
代码语言:txt复制
```java
代码语言:txt复制
//可以操作将row操作变为Action
代码语言:txt复制
Action<Row> action = new Action<Row>(r,   posInList);
代码语言:txt复制
setNonce(ng, r, action);
代码语言:txt复制
retainedActions.add(action);
代码语言:txt复制
// TODO: replica-get is not supported on this path
代码语言:txt复制
byte[] regionName = loc.getRegionInfo().getRegionName();
代码语言:txt复制
addAction(loc.getServerName(), regionName, action, actionsByServer, nonceGroup);
代码语言:txt复制
it.remove();
代码语言:txt复制
```
代码语言:txt复制
接着是
代码语言:txt复制
AsyncProcess.submitMultiActions
代码语言:txt复制
AsyncRequestFutureImpl<CResult>
代码语言:txt复制
.sendMultiAction(actionsByServer, 1, null, false);
代码语言:txt复制
内部主要是根据server,获取MultiAction,然后构建Runnable
代码语言:txt复制
```java
代码语言:txt复制
for (Map.Entry<ServerName, MultiAction<Row>> e : actionsByServer.entrySet()) {
代码语言:txt复制
  ServerName server = e.getKey();
代码语言:txt复制
 MultiAction<Row> multiAction = e.getValue();
代码语言:txt复制
 Collection<? extends Runnable> runnables = getNewMultiActionRunnable(server, multiAction,
代码语言:txt复制
 numAttempt);
代码语言:txt复制
 // make sure we correctly count the number of runnables before we try to reuse the send
代码语言:txt复制
  // thread, in case we had to split the request into different runnables because of backoff
代码语言:txt复制
 if (runnables.size() > actionsRemaining) {
代码语言:txt复制
    actionsRemaining = runnables.size();
代码语言:txt复制
 }
代码语言:txt复制
```
代码语言:txt复制
然后,遍历执行Runnable
代码语言:txt复制
```java
代码语言:txt复制
for (Runnable runnable : runnables) {
代码语言:txt复制
 if ((--actionsRemaining == 0) && reuseThread
代码语言:txt复制
      && numAttempt % HConstants.DEFAULT_HBASE_CLIENT_RETRIES_NUMBER != 0) {
代码语言:txt复制
    runnable.run();
代码语言:txt复制
 } else {
代码语言:txt复制
 try {
代码语言:txt复制
 pool.submit(runnable);
代码语言:txt复制
```
  1. Runnable的构建及Run方法
代码语言:txt复制
主要是进入getNewMultiActionRunnable
代码语言:txt复制
```java
代码语言:txt复制
List<Runnable> toReturn = new ArrayList<Runnable>(actions.size());
代码语言:txt复制
for (DelayingRunner runner : actions.values()) {
代码语言:txt复制
  incTaskCounters(runner.getActions().getRegions(), server);
代码语言:txt复制
 String traceText = "AsyncProcess.sendMultiAction";
代码语言:txt复制
 Runnable runnable = createSingleServerRequest(runner.getActions(), numAttempt, server, callsInProgress);
代码语言:txt复制
 // use a delay runner only if we need to sleep for some time
代码语言:txt复制
 if (runner.getSleepTime() > 0) {
代码语言:txt复制
    runner.setRunner(runnable);
代码语言:txt复制
 traceText = "AsyncProcess.clientBackoff.sendMultiAction";
代码语言:txt复制
 runnable = runner;
代码语言:txt复制
    if (connection.getConnectionMetrics() != null) {
代码语言:txt复制
 connection.getConnectionMetrics().incrDelayRunners();
代码语言:txt复制
 connection.getConnectionMetrics().updateDelayInterval(runner.getSleepTime());
代码语言:txt复制
 }
代码语言:txt复制
  } else {
代码语言:txt复制
 if (connection.getConnectionMetrics() != null) {
代码语言:txt复制
 connection.getConnectionMetrics().incrNormalRunners();
代码语言:txt复制
 }
代码语言:txt复制
  }
代码语言:txt复制
  runnable = Trace.wrap(traceText, runnable);
代码语言:txt复制
 toReturn.add(runnable);
代码语言:txt复制
```
代码语言:txt复制
进入SingleServerRequestRunnable,分析其Run方法
代码语言:txt复制
```java
代码语言:txt复制
// setup the callable based on the actions, if we don't have one already from the request
代码语言:txt复制
if (callable == null) {
代码语言:txt复制
  callable = createCallable(server, tableName, multiAction);
代码语言:txt复制
}
代码语言:txt复制
RpcRetryingCaller<MultiResponse> caller = createCaller(callable, rpcTimeout);
代码语言:txt复制
try {
代码语言:txt复制
 if (callsInProgress != null) {
代码语言:txt复制
 callsInProgress.add(callable);
代码语言:txt复制
 }
代码语言:txt复制
  res = caller.callWithoutRetries(callable, operationTimeout);
代码语言:txt复制
```
代码语言:txt复制
然后是RpcRetryingCaller中调用了MultiServerCallable的call方法,主要是构建请求,调用RPC。这就进入了服务端也即RSRpcServices的mutil方法。
代码语言:txt复制
```java
代码语言:txt复制
responseProto = getStub().multi(controller, requestProto);
代码语言:txt复制
```
3.2.3 HRegionserver端处理

RSRpcServices是服务端,本文对应的服务端实现是RSRpcServices.mutli。

代码语言:txt复制
if (request.hasCondition()) {
  Condition condition = request.getCondition();
  byte[] row = condition.getRow().toByteArray();
  byte[] family = condition.getFamily().toByteArray();
  byte[] qualifier = condition.getQualifier().toByteArray();
 CompareOp compareOp = CompareOp.valueOf(condition.getCompareType().name());
 ByteArrayComparable comparator =
      ProtobufUtil.toComparator(condition.getComparator());
 processed = checkAndRowMutate(region, regionAction.getActionList(),
 cellScanner, row, family, qualifier, compareOp,
 comparator, regionActionResultBuilder);
} else {
  mutateRows(region, regionAction.getActionList(), cellScanner,
 regionActionResultBuilder);
 processed = Boolean.TRUE;
}

根据条件进入checkAndRowMutate或者mutateRows。

根据类型做不同的操作,然后正式进入执行操作

代码语言:txt复制
MutationType type = action.getMutation().getMutateType();
  if (rm == null) {
    rm = new RowMutations(action.getMutation().getRow().toByteArray());
 }
 switch (type) {
 case PUT:
      rm.add(ProtobufUtil.toPut(action.getMutation(), cellScanner));
      break;
    case DELETE:
      rm.add(ProtobufUtil.toDelete(action.getMutation(), cellScanner));
      break;
    default:
 throw new DoNotRetryIOException("Atomic put and/or delete only, not "   type.name());
 }
 // To unify the response format with doNonAtomicRegionMutation and read through client's
  // AsyncProcess we have to add an empty result instance per operation
 resultOrExceptionOrBuilder.clear();
 resultOrExceptionOrBuilder.setIndex(i  );
 builder.addResultOrException(
      resultOrExceptionOrBuilder.build());
}
region.mutateRow(rm);

HRegion.mutateRow方法

HRegion.mutateRowsWithLocks

代码语言:txt复制
public void mutateRowsWithLocks(Collection<Mutation> mutations,
 Collection<byte[]> rowsToLock) throws IOException {
  mutateRowsWithLocks(mutations, rowsToLock, HConstants.NO_NONCE, HConstants.NO_NONCE);
}
public void mutateRowsWithLocks(Collection<Mutation> mutations,
 Collection<byte[]> rowsToLock, long nonceGroup, long nonce) throws IOException {
  MultiRowMutationProcessor proc = new MultiRowMutationProcessor(mutations, rowsToLock);
 processRowsWithLocks(proc, -1, nonceGroup, nonce);
}

具体处理的过程,可以自行去看了,源码注释条例很清晰。

4. 总结

Hbase的JAVA API客户端,写操作有三种实现:

  • HTablePool
代码语言:txt复制
源码请看hbase权威指南。
代码语言:txt复制
![](https://img-blog.csdnimg.cn/20190914124230128.png?x-oss-process=image/watermark,type_ZmFuZ3poZW5naGVpdGk,shadow_10,text_aHR0cHM6Ly9ibG9nLmNzZG4ubmV0L2FzZDEzNjkxMg==,size_16,color_FFFFFF,t_70)
  • HConnection
代码语言:txt复制
这种方式要自己实现一个线程池。
代码语言:txt复制
```java
代码语言:txt复制
Connection conn = ConnectionFactory.createConnection(conf);
代码语言:txt复制
TableName tabName=  TableName.valueOf("tableName");
代码语言:txt复制
Table table=conn.getTable(tabName);
代码语言:txt复制
```
  • BufferedMutator
代码语言:txt复制
建议put操作采用这种方式。
代码语言:txt复制
批量,异步puts操作。

5. Ref

  1. https://cloud.tencent.com/developer/article/1032502
  2. hbase权威指南

0 人点赞