Ubuntu 16.04+CUDA7.5+Caffe深度学习环境搭建

2021-06-08 10:56:24 浏览数 (1)

详细介绍在Ubuntu 16.04下搭建CUDA7.5 Caffe深度学习环境的过程步骤。

1.安装Ubuntu 16.04

 省略。不懂可以自行百度,系统安装后安装必要的更新和工具。

sudo apt update

sudo apt-get upgrade

sudo apt-get install vim

sudo apt-get install cmake

2.安装显卡驱动

进入all setting->Software Update,更换英伟达361.42驱动,重启电脑,使用nvidia-smi测试是否成功。

3.安装cuda

(1)安装必要的依赖库

ca-certificates-java

default-jre

default-jre-headless

fonts-dejavu-extra

freeglut3

freeglut3-dev

java-common

libatk-wrapper-java

libatk-wrapper-java-jni

libdrm-dev

libgl1-mesa-dev

libglu1-mesa-dev

libgnomevfs2-0

libgnomevfs2-common

libice-dev

libpthread-stubs0-dev

libsctp1

libsm-dev

libx11-dev

libx11-doc

libx11-xcb-dev

libxau-dev

libxcb-dri2-0-dev

libxcb-dri3-dev

libxcb-glx0-dev

libxcb-present-dev

libxcb-randr0-dev

libxcb-render0-dev

libxcb-shape0-dev

libxcb-sync-dev

libxcb-xfixes0-dev

libxcb1-dev

libxdamage-dev

libxdmcp-dev

libxext-dev

libxfixes-dev

libxi-dev

libxmu-dev

libxmu-headers

libxshmfence-dev

libxt-dev

libxxf86vm-dev

lksctp-tools

mesa-common-dev

openjdk-7-jre

openjdk-7-jre-headless

tzdata-java

x11proto-core-dev

x11proto-damage-dev

x11proto-dri2-dev

x11proto-fixes-dev

x11proto-gl-dev

x11proto-input-dev

x11proto-kb-dev

x11proto-xext-dev

x11proto-xf86vidmode-dev

xorg-sgml-doctools

xtrans-dev

libgles2-mesa-dev

nvidia-modprobe

build-essential

(2)安装cuda-toolkit

① 安装cuda_7.5.18_linux.run

sudo ./cuda_7.5.18_linux.run --override

安装过程如下:

Do you accept the previously read EULA? (accept/decline/quit): accept

You are attempting to install on an unsupported configuration. Do you wish to continue? ((y)es/(n)o) [ default is no ]: y

Install NVIDIA Accelerated Graphics Driver for Linux-x86_64 352.39? ((y)es/(n)o/(q)uit): n

Install the CUDA 7.5 Toolkit? ((y)es/(n)o/(q)uit): y

Enter Toolkit Location [ default is /usr/local/cuda-7.5 ]:

Do you want to install a symbolic link at /usr/local/cuda? ((y)es/(n)o/(q)uit): y

Install the CUDA 7.5 Samples? ((y)es/(n)o/(q)uit): y

Enter CUDA Samples Location [ default is /home/kinghorn ]: /usr/local/cuda-7.5

Installing the CUDA Toolkit in /usr/local/cuda-7.5 ...

Finished copying samples.

===========

= Summary =

===========

Driver: Not Selected

Toolkit: Installed in /usr/local/cuda-7.5

Samples: Installed in /usr/local/cuda-7.5

② 设置环境变量

vi /home/xxx/.bashrc

添加如下内容:

export PATH=/usr/local/cuda/bin:$PATH

执行如下命令使环境变量生效

source /home/xxx/.bashrc

将cuda动态库添加到动态库管理器

sudo vi /etc/ld.so.conf.d/cuda.conf

添加:

/usr/local/cuda/lib64

执行ldconfig使新加的库生效

sudo ldconfig

③ 强制使用gcc5

编辑/usr/local/cuda/include/host_config.h文件,注释掉115行

#error -- unsupported GNU version! gcc versions later than 4.9 are not supported!

改为:

//#error -- unsupported GNU version! gcc versions later than 4.9 are not supported!

(3)编译cuda例子与测试

进入到/usr/local/cuda/NVIDIA_CUDA-7.5_Samples/1_Utilities/deviceQuery目录执行:

sudo make

./deviceQuery

4.安装cudnn库

(1)解压

tar xzvf cudnn-xxx-ga.tgz

得到cuda文件夹里面含有的lib64和include两个文件夹

(2)拷贝到cuda安装目录

sudo cp cuda/cudnn.h /usr/local/cuda/include/

sudo cp cuda/lib64/libcudnn* /usr/local/cuda/lib64

注意:拷贝后将链接删除重新建立链接,否则,拷贝是多个多个不同名字的相同文件,链接关系参见cudnn解压后的文件夹。也可以分别拷贝每一个文��,链接文件拷贝使用cp -d命令。

5.安装opencv3.1.0

(1)安装基本必要库

sudo apt-get install build-essential cmake git libgtk2.0-dev pkg-config libavcodec-dev libavformat-dev libswscale-dev

(2)配置opencv,生成Makefile

cd opencv-3.1.0

mkdir build

cd build

cmake -D CMAKE_BUILD_TYPE=Release -D CMAKE_INSTALL_PREFIX=/usr/local ..

在configure过程中过程中,可能会出现下面的错误:

– ICV: Downloading ippicv_linux_20151201.tgz…

在直接下载该文件的过程中,会因为超时而失败,需要收到下载,将其拷贝至opencv-3.1.0/3rdparty/ippicv/downloads/linux-8b449a536a2157bcad08a2b9f266828b目录内,重新执行配置命令。

(3)编译opencv

make -j8

此时可能会出现另一个错误:

/usr/include/string.h: In function ‘void* __mempcpy_inline(void*, const void*, size_t)’: /usr/include/string.h:652:42: error: ‘memcpy’ was not declared in this scope return (char *) memcpy (__dest, __src, __n) __n;

这是因为ubuntu的g 版本过高造成的,只需要在opencv-3.1.0目录下的CMakeList.txt 文件的开头加入:

set(CMAKE_CXX_FLAGS “${CMAKE_CXX_FLAGS} -D_FORCE_INLINES”)

添加之后再次进行编译链接即可。

(4)查看版本号

pkg-config --modversion opencv 

(5)安装

sudo make install

6.安装caffe与配置

(1)安装必要的依赖库

sudo apt-get install build-essential

sudo apt-get install libprotobuf-dev libleveldb-dev libsnappy-dev libopencv-dev libhdf5-serial-dev protobuf-compile

sudo apt-get install --no-install-recommends libboost-all-dev

sudo apt-get install libatlas-base-dev

sudo apt-get install Python-dev

sudo apt-get install libgflags-dev libgoogle-glog-dev liblmdb-dev

如果这些库都能顺利安装,会大大减少后面遇到的问题。

(2)下载caffe-master并解压得到源码包

解压:

unzip caffe-master.zip 

(3)修改配置文件Make.config

cd caffe-maste

cp Makefile.config.example Makefile.config

vi Makefile.config

将# USE_CUDNN := 1前得#注释去掉,表示使用cuDNN,如果不是使用GPU,可以将# CPU_ONLY := 1前得注释去掉。这里我使用cuDNN来加速。

(4)编译caffe

方法1:使用cmake编译

mkdir build

cd build

cmake ..

make all -j8

这种方法一般不会出现问题。

方法2:直接使用gcc编译

make -j8

错误1:

src/caffe/net.cpp:8:18: fatal error: hdf5.h: No such file or directory

参考方法

cd /usr/lib/x86_64-linux-gnu

sudo ln -s libhdf5_serial.so.10.1.0 libhdf5_serial.so

sudo ln -s libhdf5_serial_hl.so.10.0.2 libhdf5_serial_hl.so

修改Makefile.config

INCLUDE_DIRS := $(PYTHON_INCLUDE) /usr/local/include /usr/include/hdf5/serial

LIBRARY_DIRS := $(PYTHON_LIB) /usr/local/lib /usr/lib /usr/lib/x86_64-linux-gnu/hdf5/serial

错误2:

error -- unsupported GNU version! gcc versions later than 5.3 are not supported!

目前caffe不支持高于5.3的gcc,理论上可通过对gcc,g 降级解决,但是降级后还会引起其他兼容性问题,因此并不能解决实际问题,下面附上降级方法。解决方法在后面。

① 安装低版本gcc、g

sudo apt-get install gcc-4.7 gcc-4.7-multilib

sudo apt-get install g -4.7 g -4.7-multilib

② 设置优先级

sudo update-alternatives --install /usr/bin/gcc gcc /usr/bin/gcc-4.7 40

sudo update-alternatives --install /usr/bin/gcc gcc /usr/bin/gcc-5 50

sudo update-alternatives --install /usr/bin/g g /usr/bin/g -4.7 40

sudo update-alternatives --install /usr/bin/g g /usr/bin/g -5 50

③ 选择版本

sudo update-alternatives --config gcc

There are 2 choices for the alternative gcc (providing /usr/bin/gcc)

Selection Path Priority Status

------------------------------------------------------------

0 /usr/bin/gcc-5 50 auto mode

* 1 /usr/bin/gcc-4.7 40 manual mode

2 /usr/bin/gcc-5 50 manual mode

 

sudo update-alternatives --config g

There are 2 choices for the alternative g (providing /usr/bin/g ).

Selection Path Priority Status

------------------------------------------------------------

0 /usr/bin/g -5 50 auto mode

* 1 /usr/bin/g -4.7 40 manual mode

2 /usr/bin/g -5 50 manual mode

错误3:

/usr/include/string.h: In function ‘void* __mempcpy_inline(void*, const void*, size_t)’: /usr/include/string.h:652:42: error: ‘memcpy’ was not declared in this scope return (char *) memcpy (__dest, __src, __n) __n;

NVCCFLAGS = -ccbin=$(CXX) -Xcompiler -fPIC $(COMMON_FLAGS)

改为:

NVCCFLAGS = -D_FORCE_INLINES -ccbin=$(CXX) -Xcompiler -fPIC $(COMMON_FLAGS)

错误3:

/usr/bin/ld: cannot find -lippicv

cp opencv-3.1.0/3rdparty/ippicv/unpack/ippicv_lnx/lib/intel64/libippicv.a /usr/local/lib

再次编译即可。

至此,gcc、g 降级完成。

0 人点赞