文章目录
- 1. HDFS 简介
- 2. HDFS起源发展
- 3. HDFS设计目标
- 4. HDFS应用场景
- 5. HDFS重要特性--主从架构
- 6. HDFS重要特性--分块存储机制
- 7. HDFS重要特性--副本机制
- 8. HDFS重要特性--namespace
- 9. HDFS重要特性--元数据管理
- 10. HDFS重要特性--数据块存储
1. HDFS 简介
- HDFS( Hadoop Distributed File System ),意为:Hadoop分布式文件系统。是Apache Hadoop核心组件之一,作为大数据生态圈最底层的分布式存储服务而存在。
- 分布式文件系统解决大数据如何存储问题。分布式意味着是横跨在多台计算机上的存储系统。
- HDFS是一种能够在普通硬件上运行的分布式文件系统,它是高度容错的,适应于具有大数据集的应用程序,它非常适于存储大型数据 (比如 TB 和 PB)。
- HDFS使用多台计算机存储文件, 并且提供统一的访问接口, 像是访问一个普通文件系统一样使用分布式文件系统。
2. HDFS起源发展
- Doug Cutting领导Nutch项目研发,Nutch的设计目标是构建一个大型的全网搜索引擎,包括网页抓取、索引、查询等功能。
- 随着爬虫抓取网页数量的增加,遇到了严重的可扩展性问题——如何解决数十亿网页的存储和索引问题。
- 2003年的时候, Google 发表的论文为该问题提供了可行的解决方案。 《分布式文件系统(GFS),可用于处理海量网页的存储》
- Nutch的开发人员完成了相应的开源实现HDFS,并从Nutch中剥离和MapReduce成为独立项目HADOOP。
3. HDFS设计目标
- 硬件故障(Hardware Failure) 是常态, HDFS可能有成百上千的服务器组成,每一个组件都有可能出现故障。因此故障检测和自动快速恢复是HDFS的核心架构目标。
- HDFS上的应用主要是以流式读取数据(Streaming Data Access)。HDFS被设计成用于批处理,而不是用户交互式的。相较于数据访问的反应时间,更注重数据访问的高吞吐量。
- 典型的HDFS文件大小是GB到TB的级别。所以,HDFS被调整成支持大文件(Large Data Sets)。它应该提供很高的聚合数据带宽,一个集群中支持数百个节点,一个集群中还应该支持千万级别的文件。
- 大部分HDFS应用对文件要求的是write-one-read-many访问模型。一个文件一旦创建、写入、关闭之后就不需要修改了。这一假设简化了数据一致性问题,使高吞吐量的数据访问成为可能。
- 移动计算的代价比之移动数据的代价低。 一个应用请求的计算,离它操作的数据越近就越高效。将计算移动到数据附近,比之将数据移动到应用所在显然更好。 HDFS被设计为可从一个平台轻松移植到另一个平台。这有助于将HDFS广泛用作大量应用程序的首选平台。
4. HDFS应用场景
5. HDFS重要特性–主从架构
- HDFS采用master/slave架构。一般一个HDFS集群是有一个Namenode和一定数目的Datanode组成。Namenode是HDFS主节点,Datanode是HDFS从节点,两种角色各司其职,共同协调完成分布式的文件存储服务。
6. HDFS重要特性–分块存储机制
- HDFS中的文件在 物理上是分块存储(block) 的,块的大小可以通过配置参数来规定,参数位于hdfs-default.xml中:dfs.blocksize。默认大小是128M(134217728)。
7. HDFS重要特性–副本机制
- 文件的所有block都会有副本。每个文件的block大小(dfs.blocksize)和副本系数(dfs.replication)都是可配置的。副本系数可以在文件创建的时候指定,也可以在之后通过命令改变。
- 默认dfs.replication的值是3,也就是会额外再复制2份,连同本身总共3份副本。
8. HDFS重要特性–namespace
- HDFS支持传统的层次型文件组织结构。用户可以创建目录,然后将文件保存在这些目录里。文件系统名字空间的层次结构和大多数现有的文件系统类似:用户可以创建、删除、移动或重命名文件。
- Namenode负责维护文件系统的namespace名称空间,任何对文件系统名称空间或属性的修改都将被Namenode记录下来。
- HDFS会给客户端提供一个统一的抽象目录树,客户端通过路径来访问文件,形如:
hdfs://namenode:port/dir-a/dir-b/dir-c/file.data
。
9. HDFS重要特性–元数据管理
- 在HDFS中,
Namenode
管理的元数据具有两种类型:
- 文件自身属性信息 文件名称、权限,修改时间,文件大小,复制因子,数据块大小。
- 文件块位置映射信息
记录文件块和
DataNode
之间的映射信息,即哪个块位于哪个节点上。
10. HDFS重要特性–数据块存储
- 文件的各个
block
的具体存储管理由DataNode
节点承担。每一个block
都可以在多个DataNode
上存储。