完整版教程下载地址:http://www.armbbs.cn/forum.php?mod=viewthread&tid=94547
第31章 STM32H7实数浮点FFT(支持单精度和双精度)
本章主要讲解实数浮点FTT,支持单精度和双精度。
31.1 初学者重要提示
31.2 实数浮点FFT 说明
31.3 单精度函数arm_rfft_fast_f32的使用(含幅频和相频)
31.4 双精度函数arm_rfft_fast_f64的使用(含幅频和相频)
31.5 实验例程说明(MDK)
31.6 实验例程说明(IAR)
31.7 总结
31.1 初学者重要提示
- 与上一章节的复数FFT相比,实数FFT仅需用户输入实部即可。输出结果根据FFT的对称性,也仅输出一半的频谱。
31.2 实数浮点FFT说明
CMSIS DSP库里面包含一个专门用于计算实数序列的FFT库,很多情况下,用户只需要计算实数序列即可。计算同样点数FFT的实数序列要比计算同样点数的虚数序列有速度上的优势。
快速的rfft算法是基于混合基cfft算法实现的。
一个N点的实数序列FFT正变换采用下面的步骤实现:
由上面的框图可以看出,实数序列的FFT是先计算N/2个实数的CFFT,然后再重塑数据进行处理从而获得半个FFT频谱即可(利用了FFT变换后频谱的对称性)。
一个N点的实数序列FFT逆变换采用下面的步骤实现:
实数FFT支持浮点,Q31和Q15三种数据类型。
31.3 单精度函数arm_rfft_fast_f32的使用(含幅频和相频)
31.3.1 函数说明
函数原型:
代码语言:javascript复制void arm_rfft_fast_f32(
const arm_rfft_fast_instance_f32 * S,
float32_t * p,
float32_t * pOut,
uint8_t ifftFlag)
函数描述:
这个函数用于单精度浮点实数FFT。
函数参数:
- 第1个参数是封装好的浮点FFT例化,需要用户先调用函数arm_rfft_fast_init_f32初始化,然后供此函数arm_rfft_fast_f32调用。支持32, 64, 128, 256, 512, 1024, 2048, 4096点FFT。
比如做1024点FFT,代码如下:
arm_rfft_fast_instance_f32 S;
arm_rfft_fast_init_f32(&S, 1024);
arm_rfft_fast_f32(&S, testInput_f32, testOutput_f32, ifftFlag);
- 第2个参数是实数地址,比如我们要做1024点实数FFT,要保证有1024个缓冲。
- 第3个参数是FFT转换结果,转换结果不是实数了,而是复数,按照实部,虚拟,实部,虚部,依次排列。比如做1024点FFT,这里的输出也会有1024个数据,即512个复位。
- 第4个参数用于设置正变换和逆变换,ifftFlag=0表示正变换,ifftFlag=1表示逆变换。
31.3.2 使用举例并和Matlab比较
下面通过在开发板上运行这个函数并计算幅频相应,然后再与Matlab计算的结果做对比。
代码语言:javascript复制/*
*********************************************************************************************************
* 函 数 名: arm_rfft_f32_app
* 功能说明: 调用函数arm_rfft_fast_f32计算幅频和相频
* 形 参:无
* 返 回 值: 无
*********************************************************************************************************
*/
static void arm_rfft_f32_app(void)
{
uint16_t i;
arm_rfft_fast_instance_f32 S;
/* 正变换 */
ifftFlag = 0;
/* 初始化结构体S中的参数 */
arm_rfft_fast_init_f32(&S, TEST_LENGTH_SAMPLES);
for(i=0; i<1024; i )
{
/* 波形是由直流分量,50Hz正弦波组成,波形采样率1024,初始相位60° */
testInput_f32[i] = 1 cos(2*3.1415926f*50*i/1024 3.1415926f/3);
}
/* 1024点实序列快速FFT */
arm_rfft_fast_f32(&S, testInput_f32, testOutput_f32, ifftFlag);
/* 为了方便跟函数arm_cfft_f32计算的结果做对比,这里求解了1024组模值,实际函数arm_rfft_fast_f32
只求解出了512组
*/
arm_cmplx_mag_f32(testOutput_f32, testOutputMag_f32, TEST_LENGTH_SAMPLES);
printf("=========================================rn");
/* 求相频 */
PowerPhaseRadians_f32(testOutput_f32, Phase_f32, TEST_LENGTH_SAMPLES, 0.5f);
/* 串口打印求解的幅频和相频 */
for(i=0; i<TEST_LENGTH_SAMPLES; i )
{
printf("%f, %frn", testOutputMag_f32[i], Phase_f32[i]);
}
}
运行函数arm_rfft_f32_app可以通过串口打印出计算的模值和相角,下面我们就通过Matlab计算的模值和相角跟arm_rfft_fast_f32计算的做对比。
对比前需要先将串口打印出的数据加载到Matlab中,并给这个数组起名sampledata,加载方法在前面的教程的第13章13.6小结已经讲解,这里不做赘述了。Matlab中运行的代码如下:
代码语言:javascript复制Fs = 1024; % 采样率
N = 1024; % 采样点数
n = 0:N-1; % 采样序列
t = 0:1/Fs:1-1/Fs; % 时间序列
f = n * Fs / N; %真实的频率
%波形是由直流分量,50Hz正弦波正弦波组成
x = 1 cos(2*pi*50*t pi/3) ;
y = fft(x, N); %对原始信号做FFT变换
Mag = abs(y);
subplot(2,2,1);
plot(f, Mag);
title('Matlab计算幅频响应');
xlabel('频率');
ylabel('赋值');
subplot(2,2,2);
realvalue = real(y);
imagvalue = imag(y);
plot(f, atan2(imagvalue, realvalue)*180/pi.*(Mag>=200));
title('Matlab计算相频响应');
xlabel('频率');
ylabel('相角');
subplot(2,2,3);
plot(f, sampledata1); %绘制STM32计算的幅频相应
title('STM32计算幅频响应');
xlabel('频率');
ylabel('赋值');
subplot(2,2,4);
plot(f, sampledata2); %绘制STM32计算的相频相应
title('STM32计算相频响应');
xlabel('频率');
ylabel('相角');
运行Matlab后的输出结果如下:
从上面的对比结果中可以看出,从上面的前512点对比中,我们可以看出两者的计算结果是相符的Matlab和函数arm_rfft_fast_f32计算的结果基本是一直的。幅频响应求出的幅值和相频响应中的求出的初始相角都是没问题的。
31.4 双精度函数arm_rfft_fast_f64的使用(含幅频和相频)
31.4.1 函数说明
函数原型:
代码语言:javascript复制void arm_rfft_fast_f64(
arm_rfft_fast_instance_f64 * S,
float64_t * p,
float64_t * pOut,
uint8_t ifftFlag)
函数描述:
这个函数用于双精度浮点实数FFT。
函数参数:
- 第1个参数是封装好的浮点FFT例化,需要用户先调用函数arm_rfft_fast_init_f64初始化,然后供此函数arm_rfft_fast_f64调用。支持32, 64, 128, 256, 512, 1024, 2048, 4096点FFT。
比如做1024点FFT,代码如下:
arm_rfft_fast_instance_f64 S;
arm_rfft_fast_init_f64(&S, 1024);
arm_rfft_fast_f64(&S, testInput_f64, testOutput_f64, ifftFlag);
- 第2个参数是实数地址,比如我们要做1024点实数FFT,要保证有1024个缓冲。
- 第3个参数是FFT转换结果,转换结果不是实数了,而是复数,按照实部,虚拟,实部,虚部,依次排列。比如做1024点FFT,这里的输出也会有1024个数据,即512个复位。
- 第4个参数用于设置正变换和逆变换,ifftFlag=0表示正变换,ifftFlag=1表示逆变换
31.4.2 使用举例并和Matlab比较
下面通过在开发板上运行这个函数并计算幅频相应,然后再与Matlab计算的结果做对比。
代码语言:javascript复制/*
*********************************************************************************************************
* 函 数 名: arm_rfft_f64_app
* 功能说明: 调用函数arm_rfft_fast_f64计算幅频和相频
* 形 参:无
* 返 回 值: 无
*********************************************************************************************************
*/
static void arm_rfft_f64_app(void)
{
uint16_t i;
float64_t lX,lY;
arm_rfft_fast_instance_f64 S;
/* 正变换 */
ifftFlag = 0;
/* 初始化结构体S中的参数 */
arm_rfft_fast_init_f64(&S, TEST_LENGTH_SAMPLES);
for(i=0; i<1024; i )
{
/* 波形是由直流分量,50Hz正弦波组成,波形采样率1024,初始相位60° */
testInput_f64[i] = 1 cos(2*3.1415926*50*i/1024 3.1415926/3);
}
/* 1024点实序列快速FFT */
arm_rfft_fast_f64(&S, testInput_f64, testOutput_f64, ifftFlag);
/* 求解模值 */
for (i =0; i < TEST_LENGTH_SAMPLES; i )
{
lX = testOutput_f64[2*i]; /* 实部*/
lY = testOutput_f64[2*i 1]; /* 虚部 */
testOutputMag_f64[i] = sqrt(lX*lX lY*lY); /* 求模 */
}
printf("=========================================rn");
/* 求相频 */
PowerPhaseRadians_f64(testOutput_f64, Phase_f64, TEST_LENGTH_SAMPLES, 0.5);
/* 串口打印幅值和相频 */
for(i=0; i<TEST_LENGTH_SAMPLES; i )
{
printf("%.11f, %.11frn", testOutputMag_f64[i], Phase_f64[i]);
}
}
运行函数arm_rfft_f64_app可以通过串口打印出计算的模值和相角,下面我们就通过Matlab计算的模值和相角跟arm_rfft_fast_f32计算的做对比。
对比前需要先将串口打印出的数据加载到Matlab中,并给这个数组起名sampledata,加载方法在前面的教程的第13章13.6小结已经讲解,这里不做赘述了。Matlab中运行的代码如下:
代码语言:javascript复制Fs = 1024; % 采样率
N = 1024; % 采样点数
n = 0:N-1; % 采样序列
t = 0:1/Fs:1-1/Fs; % 时间序列
f = n * Fs / N; %真实的频率
%波形是由直流分量,50Hz正弦波正弦波组成
x = 1 cos(2*pi*50*t pi/3) ;
y = fft(x, N); %对原始信号做FFT变换
Mag = abs(y);
subplot(2,2,1);
plot(f, Mag);
title('Matlab计算幅频响应');
xlabel('频率');
ylabel('赋值');
subplot(2,2,2);
realvalue = real(y);
imagvalue = imag(y);
plot(f, atan2(imagvalue, realvalue)*180/pi.*(Mag>=200));
title('Matlab计算相频响应');
xlabel('频率');
ylabel('相角');
subplot(2,2,3);
plot(f, sampledata1); %绘制STM32计算的幅频相应
title('STM32计算幅频响应');
xlabel('频率');
ylabel('赋值');
subplot(2,2,4);
plot(f, sampledata2); %绘制STM32计算的相频相应
title('STM32计算相频响应');
xlabel('频率');
ylabel('相角');
运行Matlab后的输出结果如下:
从上面的对比结果中可以看出,从上面的前512点对比中,我们可以看出两者的计算结果是相符的Matlab和函数arm_rfft_fast_f64计算的结果基本是一直的。幅频响应求出的幅值和相频响应中的求出的初始相角都是没问题的。
31.5 实验例程说明(MDK)
配套例子:
V7-221_实数浮点FTT(支持单精度和双精度)
实验目的:
- 学习实数浮点FFT,支持单精度浮点和双精度浮点
实验内容:
- 启动一个自动重装软件定时器,每100ms翻转一次LED2。
- 按下按键K1,串口打印1024点实数单精度FFT的幅频响应和相频响应。
- 按下按键K2,串口打印1024点实数双精度FFT的幅频响应和相频响应。
使用AC6注意事项
特别注意附件章节C的问题
上电后串口打印的信息:
波特率 115200,数据位 8,奇偶校验位无,停止位 1。
RTT方式打印信息:
程序设计:
系统栈大小分配:
RAM空间用的DTCM:
硬件外设初始化
硬件外设的初始化是在 bsp.c 文件实现:
代码语言:javascript复制/*
*********************************************************************************************************
* 函 数 名: bsp_Init
* 功能说明: 初始化所有的硬件设备。该函数配置CPU寄存器和外设的寄存器并初始化一些全局变量。只需要调用一次
* 形 参:无
* 返 回 值: 无
*********************************************************************************************************
*/
void bsp_Init(void)
{
/* 配置MPU */
MPU_Config();
/* 使能L1 Cache */
CPU_CACHE_Enable();
/*
STM32H7xx HAL 库初始化,此时系统用的还是H7自带的64MHz,HSI时钟:
- 调用函数HAL_InitTick,初始化滴答时钟中断1ms。
- 设置NVIC优先级分组为4。
*/
HAL_Init();
/*
配置系统时钟到400MHz
- 切换使用HSE。
- 此函数会更新全局变量SystemCoreClock,并重新配置HAL_InitTick。
*/
SystemClock_Config();
/*
Event Recorder:
- 可用于代码执行时间测量,MDK5.25及其以上版本才支持,IAR不支持。
- 默认不开启,如果要使能此选项,务必看V7开发板用户手册第8章
*/
#if Enable_EventRecorder == 1
/* 初始化EventRecorder并开启 */
EventRecorderInitialize(EventRecordAll, 1U);
EventRecorderStart();
#endif
bsp_InitKey(); /* 按键初始化,要放在滴答定时器之前,因为按钮检测是通过滴答定时器扫描 */
bsp_InitTimer(); /* 初始化滴答定时器 */
bsp_InitUart(); /* 初始化串口 */
bsp_InitExtIO(); /* 初始化FMC总线74HC574扩展IO. 必须在 bsp_InitLed()前执行 */
bsp_InitLed(); /* 初始化LED */
}
MPU配置和Cache配置:
数据Cache和指令Cache都开启。配置了AXI SRAM区(本例子未用到AXI SRAM),FMC的扩展IO区。
代码语言:javascript复制/*
*********************************************************************************************************
* 函 数 名: MPU_Config
* 功能说明: 配置MPU
* 形 参: 无
* 返 回 值: 无
*********************************************************************************************************
*/
static void MPU_Config( void )
{
MPU_Region_InitTypeDef MPU_InitStruct;
/* 禁止 MPU */
HAL_MPU_Disable();
/* 配置AXI SRAM的MPU属性为Write back, Read allocate,Write allocate */
MPU_InitStruct.Enable = MPU_REGION_ENABLE;
MPU_InitStruct.BaseAddress = 0x24000000;
MPU_InitStruct.Size = MPU_REGION_SIZE_512KB;
MPU_InitStruct.AccessPermission = MPU_REGION_FULL_ACCESS;
MPU_InitStruct.IsBufferable = MPU_ACCESS_BUFFERABLE;
MPU_InitStruct.IsCacheable = MPU_ACCESS_CACHEABLE;
MPU_InitStruct.IsShareable = MPU_ACCESS_NOT_SHAREABLE;
MPU_InitStruct.Number = MPU_REGION_NUMBER0;
MPU_InitStruct.TypeExtField = MPU_TEX_LEVEL1;
MPU_InitStruct.SubRegionDisable = 0x00;
MPU_InitStruct.DisableExec = MPU_INSTRUCTION_ACCESS_ENABLE;
HAL_MPU_ConfigRegion(&MPU_InitStruct);
/* 配置FMC扩展IO的MPU属性为Device或者Strongly Ordered */
MPU_InitStruct.Enable = MPU_REGION_ENABLE;
MPU_InitStruct.BaseAddress = 0x60000000;
MPU_InitStruct.Size = ARM_MPU_REGION_SIZE_64KB;
MPU_InitStruct.AccessPermission = MPU_REGION_FULL_ACCESS;
MPU_InitStruct.IsBufferable = MPU_ACCESS_BUFFERABLE;
MPU_InitStruct.IsCacheable = MPU_ACCESS_NOT_CACHEABLE;
MPU_InitStruct.IsShareable = MPU_ACCESS_NOT_SHAREABLE;
MPU_InitStruct.Number = MPU_REGION_NUMBER1;
MPU_InitStruct.TypeExtField = MPU_TEX_LEVEL0;
MPU_InitStruct.SubRegionDisable = 0x00;
MPU_InitStruct.DisableExec = MPU_INSTRUCTION_ACCESS_ENABLE;
HAL_MPU_ConfigRegion(&MPU_InitStruct);
/*使能 MPU */
HAL_MPU_Enable(MPU_PRIVILEGED_DEFAULT);
}
/*
*********************************************************************************************************
* 函 数 名: CPU_CACHE_Enable
* 功能说明: 使能L1 Cache
* 形 参: 无
* 返 回 值: 无
*********************************************************************************************************
*/
static void CPU_CACHE_Enable(void)
{
/* 使能 I-Cache */
SCB_EnableICache();
/* 使能 D-Cache */
SCB_EnableDCache();
}
主功能:
主程序实现如下操作:
- 启动一个自动重装软件定时器,每100ms翻转一次LED2。
- 按下按键K1,串口打印1024点实数单精度FFT的幅频响应和相频响应。
- 按下按键K2,串口打印1024点实数双精度FFT的幅频响应和相频响应。
/*
*********************************************************************************************************
* 函 数 名: main
* 功能说明: c程序入口
* 形 参: 无
* 返 回 值: 错误代码(无需处理)
*********************************************************************************************************
*/
int main(void)
{
uint8_t ucKeyCode; /* 按键代码 */
bsp_Init(); /* 硬件初始化 */
PrintfLogo(); /* 打印例程信息到串口1 */
PrintfHelp(); /* 打印操作提示信息 */
bsp_StartAutoTimer(0, 100); /* 启动1个100ms的自动重装的定时器 */
/* 进入主程序循环体 */
while (1)
{
bsp_Idle(); /* 这个函数在bsp.c文件。用户可以修改这个函数实现CPU休眠和喂狗 */
if (bsp_CheckTimer(0)) /* 判断定时器超时时间 */
{
/* 每隔100ms 进来一次 */
bsp_LedToggle(4); /* 翻转LED2的状态 */
}
ucKeyCode = bsp_GetKey(); /* 读取键值, 无键按下时返回 KEY_NONE = 0 */
if (ucKeyCode != KEY_NONE)
{
switch (ucKeyCode)
{
case KEY_DOWN_K1: /* K1键按下 */
arm_rfft_f32_app();
break;
case KEY_DOWN_K2: /* K2键按下 */
arm_rfft_f64_app();
break;
default:
/* 其它的键值不处理 */
break;
}
}
}
}
31.6 实验例程说明(IAR)
配套例子:
V7-221_实数浮点FTT(支持单精度和双精度)
实验目的:
- 学习实数浮点FFT,支持单精度浮点和双精度浮点
实验内容:
- 启动一个自动重装软件定时器,每100ms翻转一次LED2。
- 按下按键K1,串口打印1024点实数单精度FFT的幅频响应和相频响应。
- 按下按键K2,串口打印1024点实数双精度FFT的幅频响应和相频响应。
上电后串口打印的信息:
波特率 115200,数据位 8,奇偶校验位无,停止位 1。
RTT方式打印信息:
程序设计:
系统栈大小分配:
RAM空间用的DTCM:
硬件外设初始化
硬件外设的初始化是在 bsp.c 文件实现:
代码语言:javascript复制/*
*********************************************************************************************************
* 函 数 名: bsp_Init
* 功能说明: 初始化所有的硬件设备。该函数配置CPU寄存器和外设的寄存器并初始化一些全局变量。只需要调用一次
* 形 参:无
* 返 回 值: 无
*********************************************************************************************************
*/
void bsp_Init(void)
{
/* 配置MPU */
MPU_Config();
/* 使能L1 Cache */
CPU_CACHE_Enable();
/*
STM32H7xx HAL 库初始化,此时系统用的还是H7自带的64MHz,HSI时钟:
- 调用函数HAL_InitTick,初始化滴答时钟中断1ms。
- 设置NVIC优先级分组为4。
*/
HAL_Init();
/*
配置系统时钟到400MHz
- 切换使用HSE。
- 此函数会更新全局变量SystemCoreClock,并重新配置HAL_InitTick。
*/
SystemClock_Config();
/*
Event Recorder:
- 可用于代码执行时间测量,MDK5.25及其以上版本才支持,IAR不支持。
- 默认不开启,如果要使能此选项,务必看V7开发板用户手册第8章
*/
#if Enable_EventRecorder == 1
/* 初始化EventRecorder并开启 */
EventRecorderInitialize(EventRecordAll, 1U);
EventRecorderStart();
#endif
bsp_InitKey(); /* 按键初始化,要放在滴答定时器之前,因为按钮检测是通过滴答定时器扫描 */
bsp_InitTimer(); /* 初始化滴答定时器 */
bsp_InitUart(); /* 初始化串口 */
bsp_InitExtIO(); /* 初始化FMC总线74HC574扩展IO. 必须在 bsp_InitLed()前执行 */
bsp_InitLed(); /* 初始化LED */
}
MPU配置和Cache配置:
数据Cache和指令Cache都开启。配置了AXI SRAM区(本例子未用到AXI SRAM),FMC的扩展IO区。
代码语言:javascript复制/*
*********************************************************************************************************
* 函 数 名: MPU_Config
* 功能说明: 配置MPU
* 形 参: 无
* 返 回 值: 无
*********************************************************************************************************
*/
static void MPU_Config( void )
{
MPU_Region_InitTypeDef MPU_InitStruct;
/* 禁止 MPU */
HAL_MPU_Disable();
/* 配置AXI SRAM的MPU属性为Write back, Read allocate,Write allocate */
MPU_InitStruct.Enable = MPU_REGION_ENABLE;
MPU_InitStruct.BaseAddress = 0x24000000;
MPU_InitStruct.Size = MPU_REGION_SIZE_512KB;
MPU_InitStruct.AccessPermission = MPU_REGION_FULL_ACCESS;
MPU_InitStruct.IsBufferable = MPU_ACCESS_BUFFERABLE;
MPU_InitStruct.IsCacheable = MPU_ACCESS_CACHEABLE;
MPU_InitStruct.IsShareable = MPU_ACCESS_NOT_SHAREABLE;
MPU_InitStruct.Number = MPU_REGION_NUMBER0;
MPU_InitStruct.TypeExtField = MPU_TEX_LEVEL1;
MPU_InitStruct.SubRegionDisable = 0x00;
MPU_InitStruct.DisableExec = MPU_INSTRUCTION_ACCESS_ENABLE;
HAL_MPU_ConfigRegion(&MPU_InitStruct);
/* 配置FMC扩展IO的MPU属性为Device或者Strongly Ordered */
MPU_InitStruct.Enable = MPU_REGION_ENABLE;
MPU_InitStruct.BaseAddress = 0x60000000;
MPU_InitStruct.Size = ARM_MPU_REGION_SIZE_64KB;
MPU_InitStruct.AccessPermission = MPU_REGION_FULL_ACCESS;
MPU_InitStruct.IsBufferable = MPU_ACCESS_BUFFERABLE;
MPU_InitStruct.IsCacheable = MPU_ACCESS_NOT_CACHEABLE;
MPU_InitStruct.IsShareable = MPU_ACCESS_NOT_SHAREABLE;
MPU_InitStruct.Number = MPU_REGION_NUMBER1;
MPU_InitStruct.TypeExtField = MPU_TEX_LEVEL0;
MPU_InitStruct.SubRegionDisable = 0x00;
MPU_InitStruct.DisableExec = MPU_INSTRUCTION_ACCESS_ENABLE;
HAL_MPU_ConfigRegion(&MPU_InitStruct);
/*使能 MPU */
HAL_MPU_Enable(MPU_PRIVILEGED_DEFAULT);
}
/*
*********************************************************************************************************
* 函 数 名: CPU_CACHE_Enable
* 功能说明: 使能L1 Cache
* 形 参: 无
* 返 回 值: 无
*********************************************************************************************************
*/
static void CPU_CACHE_Enable(void)
{
/* 使能 I-Cache */
SCB_EnableICache();
/* 使能 D-Cache */
SCB_EnableDCache();
}
主功能:
主程序实现如下操作:
- 启动一个自动重装软件定时器,每100ms翻转一次LED2。
- 按下按键K1,串口打印1024点实数单精度FFT的幅频响应和相频响应。
- 按下按键K2,串口打印1024点实数双精度FFT的幅频响应和相频响应。
/*
*********************************************************************************************************
* 函 数 名: main
* 功能说明: c程序入口
* 形 参: 无
* 返 回 值: 错误代码(无需处理)
*********************************************************************************************************
*/
int main(void)
{
uint8_t ucKeyCode; /* 按键代码 */
bsp_Init(); /* 硬件初始化 */
PrintfLogo(); /* 打印例程信息到串口1 */
PrintfHelp(); /* 打印操作提示信息 */
bsp_StartAutoTimer(0, 100); /* 启动1个100ms的自动重装的定时器 */
/* 进入主程序循环体 */
while (1)
{
bsp_Idle(); /* 这个函数在bsp.c文件。用户可以修改这个函数实现CPU休眠和喂狗 */
if (bsp_CheckTimer(0)) /* 判断定时器超时时间 */
{
/* 每隔100ms 进来一次 */
bsp_LedToggle(4); /* 翻转LED2的状态 */
}
ucKeyCode = bsp_GetKey(); /* 读取键值, 无键按下时返回 KEY_NONE = 0 */
if (ucKeyCode != KEY_NONE)
{
switch (ucKeyCode)
{
case KEY_DOWN_K1: /* K1键按下 */
arm_rfft_f32_app();
break;
case KEY_DOWN_K2: /* K2键按下 */
arm_rfft_f64_app();
break;
default:
/* 其它的键值不处理 */
break;
}
}
}
}
31.7 总结
本章节设计到实数FFT实现,有兴趣的可以深入了解源码的实现。