《书生大模型实战营第3期》进阶岛 第4关: InternVL 多模态模型部署微调实践

2024-08-24 13:27:22 浏览数 (2)


写在前面(什么是InternVL)

InternVL 是一种用于多模态任务的深度学习模型,旨在处理和理解多种类型的数据输入,如图像和文本。它结合了视觉和语言模型,能够执行复杂的跨模态任务,比如图文匹配、图像描述生成等。通过整合视觉特征和语言信息,InternVL 可以在多模态领域取得更好的表现

InternVL 模型总览

对于InternVL这个模型来说,它vision模块就是一个微调过的ViT,llm模块是一个InternLM的模型。对于视觉模块来说,它的特殊之处在Dynamic High Resolution。

Dynamic High Resolution

动态高分辨率,为了让ViT模型能够尽可能获取到更细节的图像信息,提高视觉特征的表达能力。对于输入的图片,首先resize成448的倍数,然后按照预定义的尺寸比例从图片上crop对应的区域。细节如图所示。

Pixel Shuffle

Pixel Shuffle在超分任务中是一个常见的操作,PyTorch中有官方实现,即nn.PixelShuffle(upscale_factor) 该类的作用就是将一个tensor中的元素值进行重排列,假设tensor维度为[B, C, H, W], PixelShuffle操作不仅可以改变tensor的通道数,也会改变特征图的大小。

InternVL 部署微调实践

我们选定的任务是让InternVL-2B生成文生图提示词,这个任务需要VLM对图片有格式化的描述并输出。

让我们来一起完成一个用VLM模型进行冷笑话生成,让你的模型说出很逗的冷笑话吧。在这里,我们微调InterenVL使用xtuner。部署InternVL使用lmdeploy。

准备InternVL模型

我们使用InternVL2-2B模型。该模型已在share文件夹下挂载好,现在让我们把移动出来。

代码语言:javascript复制
cd /root
mkdir -p model

cp 模型

cp -r /root/share/new_models/OpenGVLab/InternVL2-2B /root/model/
准备环境

这里我们来手动配置下xtuner。

  • 配置虚拟环境
代码语言:javascript复制
conda create --name xtuner python=3.10 -y

# 激活虚拟环境(注意:后续的所有操作都需要在这个虚拟环境中进行)
conda activate xtuner

# 安装一些必要的库
conda install pytorch==2.1.2 torchvision==0.16.2 torchaudio==2.1.2 pytorch-cuda=12.1 -c pytorch -c nvidia -y
# 安装其他依赖
apt install libaio-dev
pip install transformers==4.39.3
pip install streamlit==1.36.0
  • 安装xtuner
代码语言:javascript复制
# 创建一个目录,用来存放源代码
mkdir -p /root/InternLM/code

cd /root/InternLM/code

git clone -b v0.1.23  https://github.com/InternLM/XTuner

进入XTuner目录

代码语言:javascript复制
cd /root/InternLM/code/XTuner
pip install -e '.[deepspeed]'
  • 安装LMDeploy
代码语言:javascript复制
pip install lmdeploy==0.5.3
  • 安装验证
代码语言:javascript复制
xtuner version

##命令

xtuner help

确认一下你的版本号和我们一致哦~

准备微调数据集

我们这里使用huggingface上的zhongshsh/CLoT-Oogiri-GO据集,特别鸣谢~。

代码语言:javascript复制
@misc{zhong2023clot,
  title={Let's Think Outside the Box: Exploring Leap-of-Thought in Large Language Models with Creative Humor Generation},
  author={Zhong, Shanshan and Huang, Zhongzhan and Gao, Shanghua and Wen, Weushao and Lin, Liang and Zitnik, Marinka and Zhou, Pan},
  journal={arXiv preprint arXiv:2312.02439},
  year={2023}
}

数据集我们从官网下载下来并进行去重,只保留中文数据等操作。并制作成XTuner需要的形式。并已在share里,我们一起从share里挪出数据集。

代码语言:javascript复制
## 首先让我们安装一下需要的包
pip install datasets matplotlib Pillow timm

## 让我们把数据集挪出来
cp -r /root/share/new_models/datasets/CLoT_cn_2000 /root/InternLM/datasets/

让我们打开数据集的一张图看看,我们选择jsonl里的第一条数据对应的图片。首先我们先把这张图片挪动到InternLM文件夹下面。

代码语言:javascript复制
cp InternLM/datasets/CLoT_cn_2000/ex_images/007aPnLRgy1hb39z0im50j30ci0el0wm.jpg InternLM/

哈哈,是两只猫在掐架。那我给到的冷笑话回复是什么呢?

InternVL 推理部署攻略

我们用LMDeploy来推理这张图片~看看它能不能成功解释出梗图呢?

使用pipeline进行推理

之后我们使用lmdeploy自带的pipeline工具进行开箱即用的推理流程,首先我们新建一个文件。

代码语言:javascript复制
touch /root/InternLM/code/test_lmdeploy.py
cd /root/InternLM/code/

然后把以下代码拷贝进test_lmdeploy.py中。

代码语言:javascript复制
from lmdeploy import pipeline
from lmdeploy.vl import load_image

pipe = pipeline('/root/model/InternVL2-2B')

image = load_image('/root/InternLM/007aPnLRgy1hb39z0im50j30ci0el0wm.jpg')
response = pipe(('请你根据这张图片,讲一个脑洞大开的梗', image))
print(response.text)

运行执行推理结果。

代码语言:javascript复制
python3 test_lmdeploy.py
推理后

推理后我们发现直接使用2b模型不能很好的讲出梗,现在我们要对这个2b模型进行微调。

我的回复为啥不是markdown 呢?


InternVL 微调攻略
准备数据集

数据集格式为:

代码语言:javascript复制
# 为了高效训练,请确保数据格式为:
{
    "id": "000000033471",
    "image": ["coco/train2017/000000033471.jpg"], # 如果是纯文本,则该字段为 None 或者不存在
    "conversations": [
      {
        "from": "human",
        "value": "<image>nWhat are the colors of the bus in the image?"
      },
      {
        "from": "gpt",
        "value": "The bus in the image is white and red."
      }
    ]
  }

这里我们也为大家准备好了可以直接进行微调的数据集。数据集就是咱们刚才复制进InternLM/datasets的数据。

配置微调参数

让我们一起修改XTuner下 InternVL的config,文件在: /root/InternLM/code/XTuner/xtuner/configs/internvl/v2/internvl_v2_internlm2_2b_qlora_finetune.py

首先我们先对微调config进行介绍:

  • setting里是定义模型基本参数的
代码语言:javascript复制
#######################################################################
#                          PART 1  Settings                           #
#######################################################################
# Model
# 模型地址
path = '/root/model/InternVL2-2B'

# Data
# 数据地址
data_root = '/root/data/'
# data_path = data_root   'LLaVA-Instruct-150K/llava_v1_5_mix665k.json'
data_path = '/root/data/screenshot_od/layout_ocr_multi.json'
image_folder = data_root   'screenshot_od/images'
prompt_template = PROMPT_TEMPLATE.internlm2_chat
# 模型最大输出长度
max_length = 8192

# Scheduler & Optimizer
#每张卡上的batch size大小
batch_size = 8  # per_device
# 梯度累积大小
accumulative_counts = 2
# dataloader数量
dataloader_num_workers = 4
# epoch大小
max_epochs = 1
# 优化器类型
optim_type = AdamW
# official 1024 -> 4e-5
lr = 1e-6
betas = (0.9, 0.999)
weight_decay = 0.05
max_norm = 1  # grad clip
warmup_ratio = 0.03

# Save
save_steps = 1000
save_total_limit = 1  # Maximum checkpoints to keep (-1 means unlimited)
  • 模型,tokenizer数据等定义
代码语言:javascript复制
#######################################################################
#            PART 2  Model & Tokenizer & Image Processor              #
#######################################################################
model = dict(
    type=InternVL_V1_5,
    model_path=path,
    freeze_llm=True,
    freeze_visual_encoder=True,
    quantization_llm=True,  # or False
    quantization_vit=False,  # or True and uncomment visual_encoder_lora
    # comment the following lines if you don't want to use Lora in llm
    llm_lora=dict(
        type=LoraConfig,
        r=128,
        lora_alpha=256,
        lora_dropout=0.05,
        target_modules=None,
        task_type='CAUSAL_LM'),
    # uncomment the following lines if you don't want to use Lora in visual encoder # noqa
    # visual_encoder_lora=dict(
    #     type=LoraConfig, r=64, lora_alpha=16, lora_dropout=0.05,
    #     target_modules=['attn.qkv', 'attn.proj', 'mlp.fc1', 'mlp.fc2'])
)

#######################################################################
#                      PART 3  Dataset & Dataloader                   #
#######################################################################
llava_dataset = dict(
    type=InternVL_V1_5_Dataset,
    model_path=path,
    data_paths=data_path,
    image_folders=image_folder,
    template=prompt_template,
    max_length=max_length)

train_dataloader = dict(
    batch_size=batch_size,
    num_workers=dataloader_num_workers,
    dataset=llava_dataset,
    sampler=dict(
        type=LengthGroupedSampler,
        length_property='modality_length',
        per_device_batch_size=batch_size * accumulative_counts),
    collate_fn=dict(type=default_collate_fn))
  • 调度,优化器等定义
代码语言:javascript复制
#######################################################################
#                    PART 4  Scheduler & Optimizer                    #
#######################################################################
# optimizer
optim_wrapper = dict(
    type=AmpOptimWrapper,
    optimizer=dict(
        type=optim_type, lr=lr, betas=betas, weight_decay=weight_decay),
    clip_grad=dict(max_norm=max_norm, error_if_nonfinite=False),
    accumulative_counts=accumulative_counts,
    loss_scale='dynamic',
    dtype='float16')

# learning policy
# More information: https://github.com/open-mmlab/mmengine/blob/main/docs/en/tutorials/param_scheduler.md  # noqa: E501
param_scheduler = [
    dict(
        type=LinearLR,
        start_factor=1e-5,
        by_epoch=True,
        begin=0,
        end=warmup_ratio * max_epochs,
        convert_to_iter_based=True),
    dict(
        type=CosineAnnealingLR,
        eta_min=0.0,
        by_epoch=True,
        begin=warmup_ratio * max_epochs,
        end=max_epochs,
        convert_to_iter_based=True)
]

# train, val, test setting
train_cfg = dict(type=TrainLoop, max_epochs=max_epochs)

#######################################################################
#                           PART 5  Runtime                           #
#######################################################################
# Log the dialogue periodically during the training process, optional
tokenizer = dict(
    type=AutoTokenizer.from_pretrained,
    pretrained_model_name_or_path=path,
    trust_remote_code=True)

custom_hooks = [
    dict(type=DatasetInfoHook, tokenizer=tokenizer),
]

# configure default hooks
default_hooks = dict(
    # record the time of every iteration.
    timer=dict(type=IterTimerHook),
    # print log every 10 iterations.
    logger=dict(type=LoggerHook, log_metric_by_epoch=False, interval=10),
    # enable the parameter scheduler.
    param_scheduler=dict(type=ParamSchedulerHook),
    # save checkpoint per `save_steps`.
    checkpoint=dict(
        type=CheckpointHook,
        save_optimizer=False,
        by_epoch=False,
        interval=save_steps,
        max_keep_ckpts=save_total_limit),
    # set sampler seed in distributed evrionment.
    sampler_seed=dict(type=DistSamplerSeedHook),
)

# configure environment
env_cfg = dict(
    # whether to enable cudnn benchmark
    cudnn_benchmark=False,
    # set multi process parameters
    mp_cfg=dict(mp_start_method='fork', opencv_num_threads=0),
    # set distributed parameters
    dist_cfg=dict(backend='nccl'),
)
  • 需要修改的部分

最基础修改一下模型地址和数据地址即可。

  • 总体config文件(复制即可)
代码语言:javascript复制
# Copyright (c) OpenMMLab. All rights reserved.
from mmengine.hooks import (CheckpointHook, DistSamplerSeedHook, IterTimerHook,
                            LoggerHook, ParamSchedulerHook)
from mmengine.optim import AmpOptimWrapper, CosineAnnealingLR, LinearLR
from peft import LoraConfig
from torch.optim import AdamW
from transformers import AutoTokenizer

from xtuner.dataset import InternVL_V1_5_Dataset
from xtuner.dataset.collate_fns import default_collate_fn
from xtuner.dataset.samplers import LengthGroupedSampler
from xtuner.engine.hooks import DatasetInfoHook
from xtuner.engine.runner import TrainLoop
from xtuner.model import InternVL_V1_5
from xtuner.utils import PROMPT_TEMPLATE

#######################################################################
#                          PART 1  Settings                           #
#######################################################################
# Model
path = '/root/model/InternVL2-2B'

# Data
data_root = '/root/InternLM/datasets/CLoT_cn_2000/'
data_path = data_root   'ex_cn.json'
image_folder = data_root
prompt_template = PROMPT_TEMPLATE.internlm2_chat
max_length = 6656

# Scheduler & Optimizer
batch_size = 4  # per_device
accumulative_counts = 4
dataloader_num_workers = 4
max_epochs = 1
optim_type = AdamW
# official 1024 -> 4e-5
lr = 2e-5
betas = (0.9, 0.999)
weight_decay = 0.05
max_norm = 1  # grad clip
warmup_ratio = 0.03

# Save
save_steps = 1000
save_total_limit = 1  # Maximum checkpoints to keep (-1 means unlimited)

#######################################################################
#            PART 2  Model & Tokenizer & Image Processor              #
#######################################################################
model = dict(
    type=InternVL_V1_5,
    model_path=path,
    freeze_llm=True,
    freeze_visual_encoder=True,
    quantization_llm=True,  # or False
    quantization_vit=False,  # or True and uncomment visual_encoder_lora
    # comment the following lines if you don't want to use Lora in llm
    llm_lora=dict(
        type=LoraConfig,
        r=128,
        lora_alpha=256,
        lora_dropout=0.05,
        target_modules=None,
        task_type='CAUSAL_LM'),
    # uncomment the following lines if you don't want to use Lora in visual encoder # noqa
    # visual_encoder_lora=dict(
    #     type=LoraConfig, r=64, lora_alpha=16, lora_dropout=0.05,
    #     target_modules=['attn.qkv', 'attn.proj', 'mlp.fc1', 'mlp.fc2'])
)

#######################################################################
#                      PART 3  Dataset & Dataloader                   #
#######################################################################
llava_dataset = dict(
    type=InternVL_V1_5_Dataset,
    model_path=path,
    data_paths=data_path,
    image_folders=image_folder,
    template=prompt_template,
    max_length=max_length)

train_dataloader = dict(
    batch_size=batch_size,
    num_workers=dataloader_num_workers,
    dataset=llava_dataset,
    sampler=dict(
        type=LengthGroupedSampler,
        length_property='modality_length',
        per_device_batch_size=batch_size * accumulative_counts),
    collate_fn=dict(type=default_collate_fn))

#######################################################################
#                    PART 4  Scheduler & Optimizer                    #
#######################################################################
# optimizer
optim_wrapper = dict(
    type=AmpOptimWrapper,
    optimizer=dict(
        type=optim_type, lr=lr, betas=betas, weight_decay=weight_decay),
    clip_grad=dict(max_norm=max_norm, error_if_nonfinite=False),
    accumulative_counts=accumulative_counts,
    loss_scale='dynamic',
    dtype='float16')

# learning policy
# More information: https://github.com/open-mmlab/mmengine/blob/main/docs/en/tutorials/param_scheduler.md  # noqa: E501
param_scheduler = [
    dict(
        type=LinearLR,
        start_factor=1e-5,
        by_epoch=True,
        begin=0,
        end=warmup_ratio * max_epochs,
        convert_to_iter_based=True),
    dict(
        type=CosineAnnealingLR,
        eta_min=0.0,
        by_epoch=True,
        begin=warmup_ratio * max_epochs,
        end=max_epochs,
        convert_to_iter_based=True)
]

# train, val, test setting
train_cfg = dict(type=TrainLoop, max_epochs=max_epochs)

#######################################################################
#                           PART 5  Runtime                           #
#######################################################################
# Log the dialogue periodically during the training process, optional
tokenizer = dict(
    type=AutoTokenizer.from_pretrained,
    pretrained_model_name_or_path=path,
    trust_remote_code=True)

custom_hooks = [
    dict(type=DatasetInfoHook, tokenizer=tokenizer),
]

# configure default hooks
default_hooks = dict(
    # record the time of every iteration.
    timer=dict(type=IterTimerHook),
    # print log every 10 iterations.
    logger=dict(type=LoggerHook, log_metric_by_epoch=False, interval=10),
    # enable the parameter scheduler.
    param_scheduler=dict(type=ParamSchedulerHook),
    # save checkpoint per `save_steps`.
    checkpoint=dict(
        type=CheckpointHook,
        save_optimizer=False,
        by_epoch=False,
        interval=save_steps,
        max_keep_ckpts=save_total_limit),
    # set sampler seed in distributed evrionment.
    sampler_seed=dict(type=DistSamplerSeedHook),
)

# configure environment
env_cfg = dict(
    # whether to enable cudnn benchmark
    cudnn_benchmark=False,
    # set multi process parameters
    mp_cfg=dict(mp_start_method='fork', opencv_num_threads=0),
    # set distributed parameters
    dist_cfg=dict(backend='nccl'),
)

# set visualizer
visualizer = None

# set log level
log_level = 'INFO'

# load from which checkpoint
load_from = None

# whether to resume training from the loaded checkpoint
resume = False

# Defaults to use random seed and disable `deterministic`
randomness = dict(seed=None, deterministic=False)

# set log processor
log_processor = dict(by_epoch=False)
开始训练

这里使用之前搞好的configs进行训练。咱们要调整一下batch size,并且使用qlora。要不半卡不够用的 QAQ。

代码语言:javascript复制
NPROC_PER_NODE=1 xtuner train /root/InternLM/code/XTuner/xtuner/configs/internvl/v2/internvl_v2_internlm2_2b_qlora_finetune.py  --work-dir /root/InternLM/work_dir/internvl_ft_run_8_filter  --deepspeed deepspeed_zero1
合并权重&&模型转换

用官方脚本进行权重合并

代码语言:javascript复制
python3 xtuner/configs/internvl/v1_5/convert_to_official.py xtuner/configs/internvl/v2/internvl_v2_internlm2_5_8b_qlora_finetune.py /root/InternLM/work_dir/internvl_ft_run_8_filter/iter_3000.pth /root/InternLM/InternVL2-2B/

# 修改路径
python3 /root/InternLM/code/XTuner/xtuner/configs/internvl/v1_5/convert_to_official.py /root/InternLM/code/XTuner/xtuner/configs/internvl/v2/internvl_v2_internlm2_5_8b_qlora_finetune.py /root/InternLM/work_dir/internvl_ft_run_8_filter/iter_3000.pth /root/InternLM/InternVL2-2B/

发现 flash_attn 安装报错

有几种修改方案

vi /root/.conda/envs/xtuner/lib/python3.10/site-packages/transformers/dynamic_module_utils.py

或者可以试试在 github 的 release 页面下载预编译包

  • https://github.com/Dao-AILab/flash-attention/releases ,
  • 找对应cuda,torch和python的的版本,记着选择 cxx11abiFALSE 的版本

最后我们的模型在:/root/InternLM/convert_model/,文件格式:

代码语言:javascript复制
.
|-- added_tokens.json
|-- config.json
|-- configuration_intern_vit.py
|-- configuration_internlm2.py
|-- configuration_internvl_chat.py
|-- conversation.py
|-- generation_config.json
|-- model.safetensors
|-- modeling_intern_vit.py
|-- modeling_internlm2.py
|-- modeling_internvl_chat.py
|-- special_tokens_map.json
|-- tokenization_internlm2.py
|-- tokenizer.model
`-- tokenizer_config.json
微调后效果对比

现在我们微调好啦,让我们再来试试这张图片吧!

我们把这行代码替换一下,然后跑一下效果。

代码语言:javascript复制
from lmdeploy import pipeline
from lmdeploy.vl import load_image

pipe = pipeline('/root/InternLM/InternVL2-2B')

image = load_image('/root/InternLM/256321723775630_.pic.jpg')
response = pipe(('请你根据这张图片,讲一个脑洞大开的梗', image))
print(response.text)

效果还不错吧~哈哈哈。

附上一些其他有意思的例子,全都不是训练集里的(:


任务

https://github.com/InternLM/Tutorial/blob/camp3/docs/L2/InternVL/task.md

  • follow 教学文档和视频使用QLoRA进行微调模型,复现微调效果,并能成功讲出梗图.

这个数据集 大概有 2000 个梗图 和 解释

第一次训练,路径有问题,修改后重新来

然后发现24G 的卡都不能微调,还得升级一下。

大约需要 32G ,内存才用了5G ,这确实非常没有效率。。。

我这好像只迭代了500次,训练微调好以后是这样子的

结果融合权重时候各种报错,索性重新安装了一下环境,并且装上了flash-attn,果然是非常重要的安装包,这次进展顺利

几经周折,发现是参数写错了,权重融合成功

微调后的效果确实不错

代码语言:javascript复制
(xtuner) root@intern-studio-50001213:~/InternLM/code# python test_lmdeploy.py 
Special tokens have been added in the vocabulary, make sure the associated word embeddings are fine-tuned or trained.
Special tokens have been added in the vocabulary, make sure the associated word embeddings are fine-tuned or trained.
[WARNING] gemm_config.in is not found; using default GEMM algo                                                                                                                                
刚才不是说了我是猫吗!
(xtuner) root@intern-studio-50001213:~/InternLM/code# python test_lmdeploy.py 
Special tokens have been added in the vocabulary, make sure the associated word embeddings are fine-tuned or trained.
Special tokens have been added in the vocabulary, make sure the associated word embeddings are fine-tuned or trained.
[WARNING] gemm_config.in is not found; using default GEMM algo                                                                                                                                
被皮带卡住的喵
  • 尝试使用LoRA,或调整xtuner的config,如LoRA rank,学习率。看模型Loss会如何变化,并记录调整后效果(选做,使用LoRA或调整config可以二选一)

其他学习内容 - cuda 12.2 安装 flash-attn

  • https://github.com/Dao-AILab/flash-attention

建议先安装 ninja ,不然直接安装会编译很久

代码语言:javascript复制
python -m pip install ninja
MAX_JOBS=128 pip install flash-attn

参考文献

大模型实战营 地址

  • https://openxlab.org.cn/models/InternLM/subject

本人学习系列笔记

第二期
  • 《书生·浦语大模型实战营》第1课 学习笔记:书生·浦语大模型全链路开源体系
  • 《书生·浦语大模型实战营》第2课 学习笔记:轻松玩转书生·浦语大模型趣味 Demo
  • 《书生·浦语大模型实战营》第3课 学习笔记:搭建你的 RAG 智能助理(茴香豆)
  • 《书生·浦语大模型实战营》第4课 学习笔记:XTuner 微调 LLM:1.8B、多模态、Agent
  • 《书生·浦语大模型实战营》第5课 学习笔记:LMDeploy 量化部署 LLM 实践
  • 《书生·浦语大模型实战营》第6课 学习笔记:Lagent & AgentLego 智能体应用搭建
  • 《书生·浦语大模型实战营》第7课 学习笔记:OpenCompass 大模型评测实战

第三期

入门岛

  • 《书生大模型实战营第3期》入门岛 学习笔记与作业:Linux 基础知识
  • 《书生大模型实战营第3期》入门岛 学习笔记与作业:Git 基础知识
  • 《书生大模型实战营第3期》入门岛 学习笔记与作业:Python 基础知识

基础岛

  • 《书生大模型实战营第3期》基础岛 第1关 :书生大模型全链路开源体系
  • 《书生大模型实战营第3期》基础岛 第2关 :8G 显存玩转书生大模型 Demo
  • 《书生大模型实战营第3期》基础岛 第3关 :浦语提示词工程实践
  • 《书生大模型实战营第3期》基础岛 第4关 :InternLM LlamaIndex RAG 实践
  • 《书生大模型实战营第3期》基础岛 第5关 :XTuner 微调个人小助手认知
  • 《书生大模型实战营第3期》基础岛 第6关 :OpenCompass 评测 InternLM-1.8B 实践

课程资源

第三期 学院闯关手册

  • https://aicarrier.feishu.cn/wiki/XBO6wpQcSibO1okrChhcBkQjnsf

第三期 作业提交

  • https://aicarrier.feishu.cn/share/base/form/shrcnZ4bQ4YmhEtMtnKxZUcf1vd

第二期 学员手册

  • https://aicarrier.feishu.cn/wiki/KamPwGy0SiArQbklScZcSpVNnTb

算力平台

  • https://studio.intern-ai.org.cn/console/dashboard
  • https://studio.intern-ai.org.cn/

课程文档

  • https://github.com/InternLM/Tutorial/tree/camp3
  • https://github.com/InternLM/Tutorial/tree/camp2

课程视频

  • https://www.bilibili.com/video/BV15m421j78d

代码仓库

  • https://github.com/InternLM/Tutorial
  • https://github.com/InternLM/Tutorial/tree/camp2

优秀项目展示与学习

  • https://aicarrier.feishu.cn/wiki/DoKWwqslwiyjjKkHhqJcvXAZnwd?table=tblyxy5MZV7gJ7yS&view=vew0rj0WuN

论文

其他参考

原始视频

  • https://www.bilibili.com/video/BV18142187g5/?vd_source=d7bc15cac5976d766ca368e2f081b28b

原始文档

https://github.com/InternLM/Tutorial/blob/camp3/docs/L0/Linux/readme.md

本人博客:

  • 基于大语言模型的本地知识库问答系统构建方案

0 人点赞