Python 可视化视频课 - 3. Seaborn 上

2021-07-07 18:04:26 浏览数 (1)

这是 Python 数据可视化系列的第三节《Seaborn 上》。

Python 数据可视化

  1. Matplotlib 上
  2. Matplotlib 下

之前 Python 数据分析和基础系列的所有课程链接如下。

Python 数据分析

  1. NumPy 上
  2. NumPy 下
  3. Pandas 上
  4. Pandas 下
  5. SciPy 上
  6. SciPy 下
  7. Pandas 时间序列
  8. Pandas 高频数据采样
  9. 默顿模型计量经济资本
  10. LSMC 定价美式和百慕大期权
  11. 负油价和负利率模型
  12. Nelson-Siegel 构建债券收益率曲线
  13. 外汇交易组合保证金制定系统
  14. FR007 利率掉期定价和曲线拔靴
  15. 量化投资 - 向量化回测

Python 基础

  1. 编程概览
  2. 元素型数据
  3. 容器型数据
  4. 流程控制:条件-循环-异常处理
  5. 函数上:低阶函数
  6. 函数下:高阶函数
  7. 类和对象:封装-继承-多态-组合
  8. 字符串专场:格式化和正则化
  9. 解析表达式:简约也简单
  10. 生成器和迭代器:简约不简单
  11. 装饰器:高端不简单

Seaborn 是基于 matplotlib 开发而用于统计可视化的高阶工具包。它可无缝相接的在 Pandas 的 DataFrame 上直接画图,而且代码量不多,函数签名也很一致。Seaborn 可视化的内容很多,我将其分为三个部分来讲解。

1. Seaborn 101

  • 场景设定
  • 风格设定
  • 色调设定
  • 图级轴级
  • Seaborn 数据集

2. 单图

  • 关系图
  • 分布图
  • 分类图
  • 回归图
  • 矩阵图

3. 组合图

  • 多图网格
  • 配对网格
  • 联合网格

本节关注第一部分 (该部分细节巨多,学完本节可以提高任意画图的能力)。

Seaborn 把“美图”用其主题 (theme) 功能体现:

set_theme( context='notebook',

style='darkgrid',

palette='deep' )

Seaborn 在画图时考量三大要素:场景 (context),风格 (style) 和色调 (palette),下面三小节详细说明,当设定场景、风格和色调时,Seaborn 中有特定函数 set_context(), set_style() 和 set_palette()。

  • 设定场景:set_theme(context=context) 等价于 set_context(context)
  • 设定风格:set_theme(style=style) 等价于 set_style(style)
  • 设定色调:set_theme(palette=palette) 等价于 set_palette(palette)

场景

代码语言:javascript复制
for context in ['paper','notebook','talk','poster']:
    sns.set_context(context)
    sns.histplot(df['Close'])
    plt.show()

风格

代码语言:javascript复制
for style in ['darkgrid','whitegrid','dark','white','ticks']:
    sns.set_style(style)
    sns.histplot(df['Close'])
    plt.show();

色调

Seaborn 提供了非常多的调色板:

从上面高亮的关键词可看出,调色板大致分为以下三类:

  1. 定性调色板 (qualitative palettes),适合用来表示分类型 (离散型) 数据
  2. 有序调色板 (sequential palettes),适合用来表示数值型 (连续型) 数据
  3. 发散调色板 (diverging palettes),适合用来表示带分类边界的数值型 (连续型) 数据

Seaborn 还提供了几个交互式小部件 (palette widgets)

定性调色板:适用于无序数据

有序调色板:适用于有序,而且只有一端有重要值的数据

发散调色板:适用于两端都有重要值的数据

图级函数 & 轴级函数

Seaborn 中的绘图函数可分为两类:

  • 坐标轴级别 (axes-level):将数据绘制到单个 matplotlib.pyplot.Axes 对象上,该对象是函数的返回值。
  • 图形级别 (figure-level):用 FacetGrid 管理图形的 Seaborn 对象与 matplotlib 接口,每个模块都有单个“图级”功能,并为各个“轴级”功能提供统一接口。

图级函数最有用的功能就是可以轻松创建多个子图 (subplots),举例如下:

代码语言:javascript复制
sns.displot(data=penguins, x="flipper_length_mm", hue="species", col="species");

轴级函数内部调用 matplotlib.pyplot.gca() 以便在“当前轴” (currently-active axes) 上绘图,但在画图时还需要设置额外的参数 ax。

代码语言:javascript复制
f, axs = plt.subplots(1, 2, figsize=(8, 4), gridspec_kw=dict(width_ratios=[4, 3]))
sns.scatterplot(data=penguins, x="flipper_length_mm", y="bill_length_mm", hue="species", ax=axs[0])
sns.histplot(data=penguins, x="species", hue="species", shrink=.8, alpha=.8, legend=False, ax=axs[1])
f.tight_layout()

0 人点赞