压缩求和
代码语言:javascript复制tf.reduce_sum(
input_tensor,
axis=None,
keepdims=None,
name=None,
reduction_indices=None,
keep_dims=None
)
Args:
input_tensor
: The tensor to reduce. Should have numeric type. #输入axis
: The dimensions to reduce. IfNone
(the default), reduces all dimensions. Must be in the range[-rank(input_tensor), rank(input_tensor))
.keepdims
: If true, retains reduced dimensions with length 1.name
: A name for the operation (optional).reduction_indices
: The old (deprecated) name for axis.keep_dims
: Deprecated alias forkeepdims
.
Returns:
The reduced tensor, of the same dtype as the input_tensor.
例子:
代码语言:javascript复制import tensorflow as tf
import numpy as np
x = tf.constant([[1,1,1],[2,2,2]])
with tf.Session() as sess:
print(sess.run(tf.reduce_sum(x))) #所有求和
print(sess.run(tf.reduce_sum(x,0))) #按 列 求和
print(sess.run(tf.reduce_sum(x,1))) #按 行 求和
print(sess.run(tf.reduce_sum(x,1,keepdims=True))) #按维度 行 求和
print(sess.run(tf.reduce_sum(x,[0,1]))) #行列求和
print(sess.run(tf.reduce_sum(x,reduction_indices=[1])))
输出结果:
9 [3 3 3] [3 6] [[3] [6]] 9 [3 6]
Reference:
tf.reduce_sum()