什么是模板匹配?
模板匹配是一种用于在较大图像中搜索和查找模板图像位置的方法。OpenCV提供matchTemplate()
方法来实现模板匹配功能。模板匹配结果返回的是灰度图像,其中每个像素表示该像素的邻域与模板匹配程度。假设输入图像的大小(W * H),模板图像的大小为(w * h),则输出图像的大小将为(W - w 1,H - h 1)。获得结果后,可以使用minMaxLoc()
方法查找最大/最小值位置,并将其作为矩形的左上角,以(w,h)作为矩形的宽度和高度来确定模板匹配到的区域。
模板匹配原理
在要检测的图像上,从左到右,从上到下遍历这一幅图像,从上到下计算模板与重叠子图像的像素匹配度,如果匹配的程度越大,这说明相同的可能性越大。只是这个匹配度的计算有讲究。
模板匹配原理
API
代码语言:javascript复制public static void matchTemplate(Mat image, Mat templ, Mat result, int method, Mat mask)
参数一:image,待匹配图像。必须是8位或者32位浮点图像。
参数二:templ,模板图像,类型与输入图像一致,并且大小不能大于源图像。
参数三:result,输出结果,必须是单通道32位浮点数,假设源图像W*H
,模板图像w*h
, 则结果必须为(W-w 1)*(H-h 1)
的大小。
参数四:method,匹配方式标志位。若为TM_SQDIFF或者TM_SQDIFF_NORMED,计算值越小,匹配度越高,剩下的几个标志位,计算值越大,匹配度越高。
代码语言:javascript复制// C : enum TemplateMatchModes
public static final int
TM_SQDIFF = 0,
TM_SQDIFF_NORMED = 1,
TM_CCORR = 2,
TM_CCORR_NORMED = 3,
TM_CCOEFF = 4,
TM_CCOEFF_NORMED = 5;
参数五:mask,可选掩码。必须和templ参数大小相同,要么和templ通道数相同,要么单通道。如果数据类型为#CV_8U,则将掩码解释为二进制掩码,表示仅使用掩码为非零的元素,并且权重与实际掩码值无关(一直等于1)。若数据类型为#CV_32F,掩码值将作为权重参与计算。
标记位
设
TM_SQDIFF
with mask:
TM_SQDIFF_NORMED
with mask:
TM_CCORR
with mask:
TM_CCORR_NORMED
with mask:
TM_CCOEFF
where
with mask:
TM_CCOEFF_NORMED
操作
代码语言:javascript复制/**
* 模板匹配
* author: yidong
* 2020/10/23
*/
class MatchTemplateActivity : AppCompatActivity() {
private lateinit var mBinding: ActivityMatchTemplateBinding
private lateinit var mRgb: Mat
private lateinit var mTemplate: Mat
private var method = Imgproc.TM_SQDIFF
set(value) {
field = value
doMatch(field)
}
override fun onCreate(savedInstanceState: Bundle?) {
super.onCreate(savedInstanceState)
mBinding = DataBindingUtil.setContentView(this, R.layout.activity_match_template)
title = "TM_SQDIFF"
val bgr = Utils.loadResource(this, R.drawable.kobe)
mRgb = Mat()
mTemplate = Mat()
Imgproc.cvtColor(bgr, mRgb, Imgproc.COLOR_BGR2RGB)
val templateBgr = Utils.loadResource(this, R.drawable.kobe_template)
Imgproc.cvtColor(templateBgr, mTemplate, Imgproc.COLOR_BGR2RGB)
mBinding.ivLena.showMat(mTemplate)
doMatch(Imgproc.TM_CCOEFF)
}
private fun doMatch(method: Int) {
val tmp = mRgb.clone()
val result = Mat()
Imgproc.matchTemplate(mRgb, mTemplate, result, method)
val minMaxLoc = Core.minMaxLoc(result)
val topLeft = if (method == Imgproc.TM_SQDIFF || method == Imgproc.TM_SQDIFF_NORMED) {
minMaxLoc.minLoc;
} else {
minMaxLoc.maxLoc;
}
val rect = Rect(topLeft, Size(mTemplate.cols().toDouble(), mTemplate.rows().toDouble()))
Imgproc.rectangle(tmp, rect, Scalar(255.0, 0.0, 0.0), 4, Imgproc.LINE_8)
mBinding.ivResult.showMat(mRgb)
tmp.release()
}
override fun onCreateOptionsMenu(menu: Menu?): Boolean {
menuInflater.inflate(R.menu.menu_match_template, menu)
return true
}
override fun onOptionsItemSelected(item: MenuItem): Boolean {
when (item.itemId) {
R.id.match_tm_sqdiff -> {
method = Imgproc.TM_SQDIFF
title = "TM_SQDIFF"
}
R.id.match_tm_sqdiff_normed -> {
method = Imgproc.TM_SQDIFF_NORMED
title = "TM_SQDIFF_NORMED"
}
R.id.match_tm_ccoeff -> {
method = Imgproc.TM_CCOEFF
title = "TM_CCOEFF"
}
R.id.match_tm_ccoeff_normed -> {
method = Imgproc.TM_CCOEFF_NORMED
title = "TM_CCOEFF_NORMED"
}
R.id.match_tm_ccorr -> {
method = Imgproc.TM_CCORR
title = "TM_CCORR"
}
R.id.match_tm_ccorr_normed -> {
method = Imgproc.TM_CCORR_NORMED
title = "TM_CCORR_NORMED"
}
}
return true
}
override fun onDestroy() {
mTemplate.release()
mRgb.release()
super.onDestroy()
}
}
结果
模板匹配结果
源码
https://github.com/onlyloveyd/LearningAndroidOpenCV