OpenCV图像处理中“投影技术”的使用

2020-12-08 14:35:08 浏览数 (1)

问题引出

本文区分”问题引出“、”概念抽象“、”算法实现“三个部分由表及里具体讲解OpenCV图像处理中“投影技术”的使用,并通过”答题卡识别“”OCR字符分割”“压板识别”“轮廓展开分析”四个的例子具体讲解算法使用。使得读者能够对“投影技术”加速认识和理解,从而在解决具体问题的时候多一个有效方法。我第一次集中遇到需要“投影”技术解决的问题,是在“答题卡”项目中。

在这样采集到的图像中,大量存在黑色的定位区块:

如果进一步定位,可以得到这样的结果:

如果做成连续图像

在这波峰波谷中,存在着的“量化”结果,对应了答题卡中的定位关系

概念抽象

在前面的分析里,我们已经基本建立起“投影”的概念。从离散的角度来说,也就是:

局部最大值:F(x)>F(x−1)且F(x)>F(x 1)

局部最小值:F(x)<F(x−1)且F(x)<F(x 1)

类似于求极值、求切线等的情况。

算法实现

代码语言:javascript复制
//投影到x或Y轴上,上波形为vup,下波形为vdown,gap为误差间隔

void projection2(Mat src,vector<int>& vup,vector<int>& vdown,int direction = DIRECTION_X,int gap = 10);

void projection2(Mat src, vector<int>& vup, vector<int>& vdown, int direction, int gap) {
    Mat tmp = src.clone();
    vector<int> vdate;
    if (DIRECTION_X == direction) {
        for (int i = 0; i < tmp.cols; i  ) {
            Mat data = tmp.col(i);
            int itmp = countNonZero(data);
            vdate.push_back(itmp);
        }
    }
    else {
        for (int i = 0; i < tmp.rows; i  ) {
            Mat data = tmp.row(i);
            int itmp = countNonZero(data);
            vdate.push_back(itmp);
        }
    }
    //整形,去除长度小于gap的零的洞
    if (vdate.size() <= gap)
        return;
    for (int i = 0; i < vdate.size() - gap; i  ) {
        if (vdate[i] > 0 && vdate[i   gap] > 0) {
            for (int j = i; j < i   gap; j  ) {
                vdate[j] = 1;
            }
            i = i   gap - 1;
        }
    }
    //记录上下沿
    for (int i = 1; i < vdate.size(); i  ) {
        if (vdate[i - 1] == 0 && vdate[i] > 0)
            vup.push_back(i);
        if (vdate[i - 1] > 0 && vdate[i] == 0)
            vdown.push_back(i);
    }
}

在具体使用过程中,注意相关控制变量的管理

问题迁移

1、OCR字符分割

通过看字符的特点,里面加了一些单个点的干扰,可以通过纵向投影来过滤,编写代码,查看特征

在这样的OCR识别中,首先可以通过投影的方法,实现字符的分割。

2 . 压板识别

在这样的项目中,同样可以通过投影的方法,获得各个压板的准确定位。

3、轮廓展开分析

在类似树叶这样的测量中,可以通过“极坐标转换”,将树叶的这样的曲线转换成可以分析的投影,从而得到比如“树叶有多少个分叉”“有无缺陷”这样的定量信息。

君子藏器于身,待时而动

0 人点赞