基于大数据技术的开源在线教育项目 三

2020-12-18 14:30:52 浏览数 (1)

上篇文章我们介绍了离线数仓的做题模块,本文我们来看下在线教育项目的实时部分。

本文代码可在开源项目https://github.com/SoundHearer/kuaiban中找到。

实时部分的架构图如下

原始数据格式及对应的topic

实时统计注册人数

topic:register_topic

数据格式

用户ID

平台ID 1:PC 2:APP 3:Others

创建时间

85571

1

2019-07-16 16:01:55

做题正确率与知识掌握度数据格式

topic:qz_log

用户ID

课程ID

知识点ID

题目ID

是否正确 0 错误 1 正确

创建时间

1005

505

29

1

1

2019-09-12 11:17:48

商品页面到订单页,订单页到支付页数据格式

{"app_id":"1","device_id":"102","distinct_id":"5fa401c8-dd45-4425-b8c6-700f9f74c532","event_name":"-","ip":"121.76.152.135","last_event_name":"-","last_page_id":"0","next_event_name":"-","next_page_id":"2","page_id":"1","server_time":"-","uid":"245494"}

topic: page_topic

uid:用户id

app_id:平台id

deviceid:平台id

disinct_id:唯一标识

Ip:用户ip地址

last_page_id :上一页面id

page_id:当前页面id 0:首页 1:商品课程页 2:订单页面 3:支付页面

next_page_id:下一页面id

实时统计学员播放视频各时长

topic: course_learn

uid:用户id

app_id:平台id

deviceid:平台id

disinct_id:唯一标识

Ip:用户ip地址

last_page_id :上一页面id

page_id:当前页面id 0:首页 1:商品课程页 2:订单页面 3:支付页面

next_page_id:下一页面id

实时统计学员播放视频各时长

topic: course_learn

{"biz":"bdfb58e5-d14c-45d2-91bc-1d9409800ac3","chapterid":"1","cwareid":"3","edutypeid":"3","pe":"55","ps":"41","sourceType":"APP","speed":"2","subjectid":"2","te":"1563352166417","ts":"1563352159417","uid":"235","videoid":"2"}

biz:唯一标识

chapterid:章节id

cwareid:课件id

edutypeid:辅导id

ps:视频播放时间区间

pe:视频播放结束区间

sourceType:播放平台

speed:播放倍速

ts:视频播放开始时间(时间戳)

te:视频播放结束时间(时间戳)

videoid:视频id

新建Topic

代码语言:javascript复制
kafka-topics --zookeeper cdh1.macro.com:2181,cdh2.macro.com:2181,cdh3.macro.com:2181/kafka --create --topic register_topic --partitions 10 --replication-factor 2
kafka-topics --zookeeper cdh1.macro.com:2181,cdh2.macro.com:2181,cdh3.macro.com:2181/kafka --create --topic page_topic --partitions 10 --replication-factor 2
kafka-topics --zookeeper cdh1.macro.com:2181,cdh2.macro.com:2181,cdh3.macro.com:2181/kafka --create --topic course_learn --partitions 10 --replication-factor 2
 kafka-topics --zookeeper cdh1.macro.com:2181,cdh2.macro.com:2181,cdh3.macro.com:2181/kafka --create --topic qz_log --partitions 10 --replication-factor 2

模拟数据采集

将log文件通过kafka生产者发送到topic中去,log源文件可以在开源项目https://github.com/SoundHearer/kuaiban中找到

以course_learn.log为例,我们将log上传到了hdfs中,生产者代码为下:

代码语言:javascript复制
import java.util.Properties
import org.apache.kafka.clients.producer.{KafkaProducer, ProducerRecord}
import org.apache.spark.{SparkConf, SparkContext}

object CourseLearnProducer {
  def main(args: Array[String]): Unit = {
    val sparkConf = new SparkConf().setAppName("courseProducer").setMaster("local[*]")
    val ssc = new SparkContext(sparkConf)
//    System.setProperty("hadoop.home.dir", "D:\hadoop\hadoop-common-2.2.0-bin-master")
    val resultLog = ssc.textFile("hdfs://cdh1.macro.com:8020/user/catelf/data/course_learn.log", 10)
      .foreachPartition(partitoin => {
        val props = new Properties()
        props.put("bootstrap.servers", "cdh1.macro.com:9092,cdh2.macro.com:9092,cdh3.macro.com:9092")
        props.put("acks", "1")
        props.put("batch.size", "16384")
        props.put("linger.ms", "10")
        props.put("buffer.memory", "33554432")
        props.put("key.serializer",
          "org.apache.kafka.common.serialization.StringSerializer")
        props.put("value.serializer",
          "org.apache.kafka.common.serialization.StringSerializer")
        val producer = new KafkaProducer[String, String](props)
        partitoin.foreach(item => {
          val msg = new ProducerRecord[String, String]("course_learn", item)
          producer.send(msg)
        })
        producer.flush()
        producer.close()
      })
  }
}

实现

实时统计注册人员信息

用户使用网站或APP进行注册,后台实时收集数据传输Kafka,Spark Streaming进行对接统计,实时统计注册人数。

需求1:实时统计注册人数,批次为3秒一批,使用updateStateBykey算子计算历史数据和当前批次的数据总数,仅此需求使用updateStateBykey,后续需求不使用updateStateBykey。

需求2:每6秒统统计一次1分钟内的注册数据,不需要历史数据 提示:reduceByKeyAndWindow算子

代码语言:javascript复制
import java.lang
import java.sql.ResultSet
import java.util.Random

import com.catelf.qzpoint.util.{DataSourceUtil, QueryCallback, SqlProxy}
import org.apache.kafka.clients.consumer.ConsumerRecord
import org.apache.kafka.common.TopicPartition
import org.apache.kafka.common.serialization.StringDeserializer
import org.apache.spark.SparkConf
import org.apache.spark.streaming.dstream.InputDStream
import org.apache.spark.streaming.kafka010._
import org.apache.spark.streaming.{Seconds, StreamingContext}

import scala.collection.mutable

object RegisterStreaming {
  private val groupid = "register_group_test"

  def main(args: Array[String]): Unit = {
    System.setProperty("HADOOP_USER_NAME", "hdfs")
    val conf = new SparkConf().setAppName(this.getClass.getSimpleName).setMaster("local[2]")
      .set("spark.streaming.kafka.maxRatePerPartition", "50")
      .set("spark.streaming.stopGracefullyOnShutdown", "true")
    val ssc = new StreamingContext(conf, Seconds(3))
    val topics = Array("register_topic")
    val kafkaMap: Map[String, Object] = Map[String, Object](
      "bootstrap.servers" -> "cdh1.macro.com:9092,cdh2.macro.com:9092,cdh3.macro.com:9092",
      "key.deserializer" -> classOf[StringDeserializer],
      "value.deserializer" -> classOf[StringDeserializer],
      "group.id" -> groupid,
      "auto.offset.reset" -> "earliest",
      "enable.auto.commit" -> (false: lang.Boolean)
    )
    ssc.checkpoint("hdfs://cdh1.macro.com:8020/user/catelf/sparkstreaming/checkpoint")
    //查询mysql中是否有偏移量
    val sqlProxy = new SqlProxy()
    val offsetMap = new mutable.HashMap[TopicPartition, Long]()
    val client = DataSourceUtil.getConnection
    try {
      sqlProxy.executeQuery(client, "select * from `offset_manager` where groupid=?", Array(groupid), new QueryCallback {
        override def process(rs: ResultSet): Unit = {
          while (rs.next()) {
            val model = new TopicPartition(rs.getString(2), rs.getInt(3))
            val offset = rs.getLong(4)
            offsetMap.put(model, offset)
          }
          rs.close() //关闭游标
        }
      })
    } catch {
      case e: Exception => e.printStackTrace()
    } finally {
      sqlProxy.shutdown(client)
    }
    //设置kafka消费数据的参数  判断本地是否有偏移量  有则根据偏移量继续消费 无则重新消费
    val stream: InputDStream[ConsumerRecord[String, String]] = if (offsetMap.isEmpty) {
      KafkaUtils.createDirectStream(
        ssc, LocationStrategies.PreferConsistent, ConsumerStrategies.Subscribe[String, String](topics, kafkaMap))
    } else {
      KafkaUtils.createDirectStream(
        ssc, LocationStrategies.PreferConsistent, ConsumerStrategies.Subscribe[String, String](topics, kafkaMap, offsetMap))
    }
    val resultDStream = stream.filter(item => item.value().split("t").length == 3).
      mapPartitions(partitions => {
        partitions.map(item => {
          val line = item.value()
          val arr = line.split("t")
          val app_name = arr(1) match {
            case "1" => "PC"
            case "2" => "APP"
            case _ => "Other"
          }
          (app_name, 1)
        })
      })
    resultDStream.cache()
    //    resultDStream.reduceByKeyAndWindow((x: Int, y: Int) => x   y, Seconds(60), Seconds(6)).print()
    val updateFunc = (values: Seq[Int], state: Option[Int]) => {
      val currentCount = values.sum //本批次求和
      val previousCount = state.getOrElse(0) //历史数据
      Some(currentCount   previousCount)
    }
    resultDStream.updateStateByKey(updateFunc).print()

    //处理完 业务逻辑后 手动提交offset维护到本地 mysql中
    stream.foreachRDD(rdd => {
      val sqlProxy = new SqlProxy()
      val client = DataSourceUtil.getConnection
      try {
        val offsetRanges: Array[OffsetRange] = rdd.asInstanceOf[HasOffsetRanges].offsetRanges
        for (or <- offsetRanges) {
          sqlProxy.executeUpdate(client, "replace into `offset_manager` (groupid,topic,`partition`,untilOffset) values(?,?,?,?)",
            Array(groupid, or.topic, or.partition.toString, or.untilOffset))
        }
      } catch {
        case e: Exception => e.printStackTrace()
      } finally {
        sqlProxy.shutdown(client)
      }
    })
    ssc.start()
    ssc.awaitTermination()
  }

}

实时计算学员做题算正确率与知识点掌握度

用户在网站或APP进行做题,做完题点击交卷按钮,程序将做题记录提交,传输到Kafka中,下游Spark Streaming对接kafka实现实时计算做题正确率和掌握度,将正确率和掌握度存入mysql中,用户点击交卷后刷新页面能立马看到自己做题的详情。

需求1:要求Spark Streaming 保证数据不丢失,每秒100条处理速度,需要手动维护偏移量

需求2:同一个用户做在同一门课程同一知识点下做题需要去重,需要根据历史数据进行去重并且记录去重后的做题id与个数。

需求3:计算知识点正确率 正确率计算公式:做题正确总个数/做题总数 保留两位小数

需求4:计算知识点掌握度 去重后的做题个数/当前知识点总题数(已知30题)*当前知识点的正确率

代码语言:javascript复制
import java.lang
import java.sql.{Connection, ResultSet}
import java.time.LocalDateTime
import java.time.format.DateTimeFormatter

import com.catelf.qzpoint.util.{DataSourceUtil, QueryCallback, SqlProxy}
import org.apache.kafka.clients.consumer.ConsumerRecord
import org.apache.kafka.common.TopicPartition
import org.apache.kafka.common.serialization.StringDeserializer
import org.apache.spark.SparkConf
import org.apache.spark.streaming.dstream.InputDStream
import org.apache.spark.streaming.kafka010._
import org.apache.spark.streaming.{Seconds, StreamingContext}

import scala.collection.mutable

/**
 * 知识点掌握度实时统计
 */
object QzPointStreaming {

  private val groupid = "qz_point_group"

  def main(args: Array[String]): Unit = {
    val conf = new SparkConf().setAppName(this.getClass.getSimpleName).setMaster("local[*]")
      .set("spark.streaming.kafka.maxRatePerPartition", "50")
      .set("spark.streaming.stopGracefullyOnShutdown", "true")
    val ssc = new StreamingContext(conf, Seconds(3))
    val topics = Array("qz_log")
    val kafkaMap: Map[String, Object] = Map[String, Object](
      "bootstrap.servers" -> "cdh1.macro.com:9092,cdh2.macro.com:9092,cdh3.macro.com:9092",
      "key.deserializer" -> classOf[StringDeserializer],
      "value.deserializer" -> classOf[StringDeserializer],
      "group.id" -> groupid,
      "auto.offset.reset" -> "earliest",
      "enable.auto.commit" -> (false: lang.Boolean)
    )
    //查询mysql中是否存在偏移量
    val sqlProxy = new SqlProxy()
    val offsetMap = new mutable.HashMap[TopicPartition, Long]()
    val client = DataSourceUtil.getConnection
    try {
      sqlProxy.executeQuery(client, "select * from `offset_manager` where groupid=?", Array(groupid), new QueryCallback {
        override def process(rs: ResultSet): Unit = {
          while (rs.next()) {
            val model = new TopicPartition(rs.getString(2), rs.getInt(3))
            val offset = rs.getLong(4)
            offsetMap.put(model, offset)
          }
          rs.close() //关闭游标
        }
      })
    } catch {
      case e: Exception => e.printStackTrace()
    } finally {
      sqlProxy.shutdown(client)
    }
    //设置kafka消费数据的参数  判断本地是否有偏移量  有则根据偏移量继续消费 无则重新消费
    val stream: InputDStream[ConsumerRecord[String, String]] = if (offsetMap.isEmpty) {
      KafkaUtils.createDirectStream(
        ssc, LocationStrategies.PreferConsistent, ConsumerStrategies.Subscribe[String, String](topics, kafkaMap))
    } else {
      KafkaUtils.createDirectStream(
        ssc, LocationStrategies.PreferConsistent, ConsumerStrategies.Subscribe[String, String](topics, kafkaMap, offsetMap))
    }
    //过滤不正常数据 获取数据
    val dsStream = stream.filter(item => item.value().split("t").length == 6).
      mapPartitions(partition => partition.map(item => {
        val line = item.value()
        val arr = line.split("t")
        val uid = arr(0) //用户id
        val courseid = arr(1) //课程id
        val pointid = arr(2) //知识点id
        val questionid = arr(3) //题目id
        val istrue = arr(4) //是否正确
        val createtime = arr(5) //创建时间
        (uid, courseid, pointid, questionid, istrue, createtime)
      }))
    dsStream.foreachRDD(rdd => {
      //获取相同用户 同一课程 同一知识点的数据
      val groupRdd = rdd.groupBy(item => item._1   "-"   item._2   "-"   item._3)
      groupRdd.foreachPartition(partition => {
        //在分区下获取jdbc连接
        val sqlProxy = new SqlProxy()
        val client = DataSourceUtil.getConnection
        try {
          partition.foreach { case (key, iters) =>
            qzQuestionUpdate(key, iters, sqlProxy, client) //对题库进行更新操作
          }
        } catch {
          case e: Exception => e.printStackTrace()
        }
        finally {
          sqlProxy.shutdown(client)
        }
      }
      )
    })
    //处理完 业务逻辑后 手动提交offset维护到本地 mysql中
    stream.foreachRDD(rdd => {
      val sqlProxy = new SqlProxy()
      val client = DataSourceUtil.getConnection
      try {
        val offsetRanges: Array[OffsetRange] = rdd.asInstanceOf[HasOffsetRanges].offsetRanges
        for (or <- offsetRanges) {
          sqlProxy.executeUpdate(client, "replace into `offset_manager` (groupid,topic,`partition`,untilOffset) values(?,?,?,?)",
            Array(groupid, or.topic, or.partition.toString, or.untilOffset))
        }
      } catch {
        case e: Exception => e.printStackTrace()
      } finally {
        sqlProxy.shutdown(client)
      }
    })

    ssc.start()
    ssc.awaitTermination()
  }

  /**
   * 对题目表进行更新操作
   *
   * @param key
   * @param iters
   * @param sqlProxy
   * @param client
   * @return
   */
  def qzQuestionUpdate(key: String, iters: Iterable[(String, String, String, String, String, String)], sqlProxy: SqlProxy, client: Connection) = {
    val keys = key.split("-")
    val userid = keys(0).toInt
    val courseid = keys(1).toInt
    val pointid = keys(2).toInt
    val array = iters.toArray
    val questionids = array.map(_._4).distinct //对当前批次的数据下questionid 去重
    //查询历史数据下的 questionid
    var questionids_history: Array[String] = Array()
    sqlProxy.executeQuery(client, "select questionids from qz_point_history where userid=? and courseid=? and pointid=?",
      Array(userid, courseid, pointid), new QueryCallback {
        override def process(rs: ResultSet): Unit = {
          while (rs.next()) {
            questionids_history = rs.getString(1).split(",")
          }
          rs.close() //关闭游标
        }
      })
    //获取到历史数据后再与当前数据进行拼接 去重
    val resultQuestionid = questionids.union(questionids_history).distinct
    val countSize = resultQuestionid.length
    val resultQuestionid_str = resultQuestionid.mkString(",")
    val qz_count = questionids.length //去重后的题个数
    var qz_sum = array.length //获取当前批次题总数
    var qz_istrue = array.filter(_._5.equals("1")).size //获取当前批次做正确的题个数
    val createtime = array.map(_._6).min //获取最早的创建时间 作为表中创建时间
    //更新qz_point_set 记录表 此表用于存当前用户做过的questionid表
    val updatetime = DateTimeFormatter.ofPattern("yyyy-MM-dd HH:mm:ss").format(LocalDateTime.now())
    sqlProxy.executeUpdate(client, "insert into qz_point_history(userid,courseid,pointid,questionids,createtime,updatetime) values(?,?,?,?,?,?) "  
      " on duplicate key update questionids=?,updatetime=?", Array(userid, courseid, pointid, resultQuestionid_str, createtime, createtime, resultQuestionid_str, updatetime))

    var qzSum_history = 0
    var istrue_history = 0
    sqlProxy.executeQuery(client, "select qz_sum,qz_istrue from qz_point_detail where userid=? and courseid=? and pointid=?",
      Array(userid, courseid, pointid), new QueryCallback {
        override def process(rs: ResultSet): Unit = {
          while (rs.next()) {
            qzSum_history  = rs.getInt(1)
            istrue_history  = rs.getInt(2)
          }
          rs.close()
        }
      })
    qz_sum  = qzSum_history
    qz_istrue  = istrue_history
    val correct_rate = qz_istrue.toDouble / qz_sum.toDouble //计算正确率
    //计算完成率
    //假设每个知识点下一共有30道题  先计算题的做题情况 再计知识点掌握度
    val qz_detail_rate = countSize.toDouble / 30 //算出做题情况乘以 正确率 得出完成率 假如30道题都做了那么正确率等于 知识点掌握度
    val mastery_rate = qz_detail_rate * correct_rate
    sqlProxy.executeUpdate(client, "insert into qz_point_detail(userid,courseid,pointid,qz_sum,qz_count,qz_istrue,correct_rate,mastery_rate,createtime,updatetime)"  
      " values(?,?,?,?,?,?,?,?,?,?) on duplicate key update qz_sum=?,qz_count=?,qz_istrue=?,correct_rate=?,mastery_rate=?,updatetime=?",
      Array(userid, courseid, pointid, qz_sum, countSize, qz_istrue, correct_rate, mastery_rate, createtime, updatetime, qz_sum, countSize, qz_istrue, correct_rate, mastery_rate, updatetime))

  }
}

实时统计商品页到订单页,订单页到支付页转换率

用户浏览课程首页点击下订单,跳转到订单页面,再点击支付跳转到支付页面进行支付,收集各页面跳转json数据,解析json数据计算各页面点击数和转换率,计算top3点击量按地区排名(ip字段,需要根据历史数据累计)

需求1:计算首页总浏览数、订单页总浏览数、支付页面总浏览数

需求2:计算商品课程页面到订单页的跳转转换率、订单页面到支付页面的跳转转换率

需求3:根据ip得出相应省份,展示出top3省份的点击数,需要根据历史数据累加

代码语言:javascript复制
import java.lang
import java.sql.{Connection, ResultSet}
import java.text.NumberFormat

import com.catelf.qzpoint.util.{DataSourceUtil, ParseJsonData, QueryCallback, SqlProxy}
import org.apache.kafka.clients.consumer.ConsumerRecord
import org.apache.kafka.common.TopicPartition
import org.apache.kafka.common.serialization.StringDeserializer
import org.apache.spark.streaming.dstream.InputDStream
import org.apache.spark.streaming.kafka010._
import org.apache.spark.streaming.{Seconds, StreamingContext}
import org.apache.spark.{SparkConf, SparkFiles}
import org.lionsoul.ip2region.{DbConfig, DbSearcher}

import scala.collection.mutable
import scala.collection.mutable.ArrayBuffer

/**
 * 页面转换率实时统计
 */
object PageStreaming {
  private val groupid = "vip_count_groupid"

  def main(args: Array[String]): Unit = {
    val conf = new SparkConf().setAppName(this.getClass.getSimpleName).setMaster("local[*]")
      .set("spark.streaming.kafka.maxRatePerPartition", "30")
      .set("spark.streaming.stopGracefullyOnShutdown", "true")

    val ssc = new StreamingContext(conf, Seconds(3))
    val topics = Array("page_topic")
    val kafkaMap: Map[String, Object] = Map[String, Object](
      "bootstrap.servers" -> "cdh1.macro.com:9092,cdh2.macro.com:9092,cdh3.macro.com:9092",
      "key.deserializer" -> classOf[StringDeserializer],
      "value.deserializer" -> classOf[StringDeserializer],
      "group.id" -> groupid,
      "auto.offset.reset" -> "earliest",
      "enable.auto.commit" -> (false: lang.Boolean)
    )
    //查询mysql中是否存在偏移量
    val sqlProxy = new SqlProxy()
    val offsetMap = new mutable.HashMap[TopicPartition, Long]()
    val client = DataSourceUtil.getConnection
    try {
      sqlProxy.executeQuery(client, "select *from `offset_manager` where groupid=?", Array(groupid), new QueryCallback {
        override def process(rs: ResultSet): Unit = {
          while (rs.next()) {
            val model = new TopicPartition(rs.getString(2), rs.getInt(3))
            val offset = rs.getLong(4)
            offsetMap.put(model, offset)
          }
          rs.close()
        }
      })
    } catch {
      case e: Exception => e.printStackTrace()
    } finally {
      sqlProxy.shutdown(client)
    }

    //设置kafka消费数据的参数 判断本地是否有偏移量  有则根据偏移量继续消费 无则重新消费
    val stream: InputDStream[ConsumerRecord[String, String]] = if (offsetMap.isEmpty) {
      KafkaUtils.createDirectStream(
        ssc, LocationStrategies.PreferConsistent, ConsumerStrategies.Subscribe[String, String](topics, kafkaMap))
    } else {
      KafkaUtils.createDirectStream(
        ssc, LocationStrategies.PreferConsistent, ConsumerStrategies.Subscribe[String, String](topics, kafkaMap, offsetMap))
    }
    //解析json数据
    val dsStream = stream.map(item => item.value()).mapPartitions(partition => {
      partition.map(item => {
        val jsonObject = ParseJsonData.getJsonData(item)
        val uid = if (jsonObject.containsKey("uid")) jsonObject.getString("uid") else ""
        val app_id = if (jsonObject.containsKey("app_id")) jsonObject.getString("app_id") else ""
        val device_id = if (jsonObject.containsKey("device_id")) jsonObject.getString("device_id") else ""
        val ip = if (jsonObject.containsKey("ip")) jsonObject.getString("ip") else ""
        val last_page_id = if (jsonObject.containsKey("last_page_id")) jsonObject.getString("last_page_id") else ""
        val pageid = if (jsonObject.containsKey("page_id")) jsonObject.getString("page_id") else ""
        val next_page_id = if (jsonObject.containsKey("next_page_id")) jsonObject.getString("next_page_id") else ""
        (uid, app_id, device_id, ip, last_page_id, pageid, next_page_id)
      })
    }).filter(item => {
      !item._5.equals("") && !item._6.equals("") && !item._7.equals("")
    })
    dsStream.cache()
    val pageValueDStream = dsStream.map(item => (item._5   "_"   item._6   "_"   item._7, 1))
    val resultDStream = pageValueDStream.reduceByKey(_   _)
    resultDStream.foreachRDD(rdd => {
      rdd.foreachPartition(partition => {
        //在分区下获取jdbc连接
        val sqlProxy = new SqlProxy()
        val client = DataSourceUtil.getConnection
        try {
          partition.foreach(item => {
            calcPageJumpCount(sqlProxy, item, client) //计算页面跳转个数
          })
        } catch {
          case e: Exception => e.printStackTrace()
        } finally {
          sqlProxy.shutdown(client)
        }
      })
    })

    ssc.sparkContext.addFile("hdfs://cdh1.macro.com:8020/user/catelf/data/ip2region.db") //广播文件
    val ipDStream = dsStream.mapPartitions(patitions => {
      val dbFile = SparkFiles.get("ip2region.db")
      val ipsearch = new DbSearcher(new DbConfig(), dbFile)
      patitions.map { item =>
        val ip = item._4
        val province = ipsearch.memorySearch(ip).getRegion().split("\|")(2) //获取ip详情   中国|0|上海|上海市|有线通
        (province, 1l) //根据省份 统计点击个数
      }
    }).reduceByKey(_   _)


    ipDStream.foreachRDD(rdd => {
      //查询mysql历史数据 转成rdd
      val ipSqlProxy = new SqlProxy()
      val ipClient = DataSourceUtil.getConnection
      try {
        val history_data = new ArrayBuffer[(String, Long)]()
        ipSqlProxy.executeQuery(ipClient, "select province,num from tmp_city_num_detail", null, new QueryCallback {
          override def process(rs: ResultSet): Unit = {
            while (rs.next()) {
              val tuple = (rs.getString(1), rs.getLong(2))
              history_data  = tuple
            }
          }
        })
        val history_rdd = ssc.sparkContext.makeRDD(history_data)
        val resultRdd = history_rdd.fullOuterJoin(rdd).map(item => {
          val province = item._1
          val nums = item._2._1.getOrElse(0l)   item._2._2.getOrElse(0l)
          (province, nums)
        })
        resultRdd.foreachPartition(partitions => {
          val sqlProxy = new SqlProxy()
          val client = DataSourceUtil.getConnection
          try {
            partitions.foreach(item => {
              val province = item._1
              val num = item._2
              //修改mysql数据 并重组返回最新结果数据
              sqlProxy.executeUpdate(client, "insert into tmp_city_num_detail(province,num)values(?,?) on duplicate key update num=?",
                Array(province, num, num))
            })
          } catch {
            case e: Exception => e.printStackTrace()
          } finally {
              sqlProxy.shutdown(client)
          }
        })
        val top3Rdd = resultRdd.sortBy[Long](_._2, false).take(3)
        sqlProxy.executeUpdate(ipClient, "truncate table top_city_num", null)
        top3Rdd.foreach(item => {
          sqlProxy.executeUpdate(ipClient, "insert into top_city_num (province,num) values(?,?)", Array(item._1, item._2))
        })
      } catch {
        case e: Exception => e.printStackTrace()
      } finally {
        sqlProxy.shutdown(ipClient)
      }
    })

    //计算转换率
    //处理完 业务逻辑后 手动提交offset维护到本地 mysql中
    stream.foreachRDD(rdd => {
      val sqlProxy = new SqlProxy()
      val client = DataSourceUtil.getConnection
      try {
        calcJumRate(sqlProxy, client) //计算转换率
        val offsetRanges: Array[OffsetRange] = rdd.asInstanceOf[HasOffsetRanges].offsetRanges
        for (or <- offsetRanges) {
          sqlProxy.executeUpdate(client, "replace into `offset_manager` (groupid,topic,`partition`,untilOffset) values(?,?,?,?)",
            Array(groupid, or.topic, or.partition.toString, or.untilOffset))
        }
      } catch {
        case e: Exception => e.printStackTrace()
      } finally {
        sqlProxy.shutdown(client)
      }
    })
    ssc.start()
    ssc.awaitTermination()
  }

  /**
   * 计算页面跳转个数
   *
   * @param sqlProxy
   * @param item
   * @param client
   */
  def calcPageJumpCount(sqlProxy: SqlProxy, item: (String, Int), client: Connection): Unit = {
    val keys = item._1.split("_")
    var num: Long = item._2
    val page_id = keys(1).toInt //获取当前page_id
    val last_page_id = keys(0).toInt //获取上一page_id
    val next_page_id = keys(2).toInt //获取下页面page_id
    //查询当前page_id的历史num个数
    sqlProxy.executeQuery(client, "select num from page_jump_rate where page_id=?", Array(page_id), new QueryCallback {
      override def process(rs: ResultSet): Unit = {
        while (rs.next()) {
          num  = rs.getLong(1)
        }
        rs.close()
      }

      //对num 进行修改 并且判断当前page_id是否为首页
      if (page_id == 1) {
        sqlProxy.executeUpdate(client, "insert into page_jump_rate(last_page_id,page_id,next_page_id,num,jump_rate)"  
          "values(?,?,?,?,?) on duplicate key update num=num ?", Array(last_page_id, page_id, next_page_id, num, "100%", num))
      } else {
        sqlProxy.executeUpdate(client, "insert into page_jump_rate(last_page_id,page_id,next_page_id,num)"  
          "values(?,?,?,?) on duplicate key update num=num ?", Array(last_page_id, page_id, next_page_id, num, num))
      }
    })
  }

  /**
   * 计算转换率
   */
  def calcJumRate(sqlProxy: SqlProxy, client: Connection): Unit = {
    var page1_num = 0l
    var page2_num = 0l
    var page3_num = 0l
    sqlProxy.executeQuery(client, "select num from page_jump_rate where page_id=?", Array(1), new QueryCallback {
      override def process(rs: ResultSet): Unit = {
        while (rs.next()) {
          page1_num = rs.getLong(1)
        }
      }
    })
    sqlProxy.executeQuery(client, "select num from page_jump_rate where page_id=?", Array(2), new QueryCallback {
      override def process(rs: ResultSet): Unit = {
        while (rs.next()) {
          page2_num = rs.getLong(1)
        }
      }
    })
    sqlProxy.executeQuery(client, "select num from page_jump_rate where page_id=?", Array(3), new QueryCallback {
      override def process(rs: ResultSet): Unit = {
        while (rs.next()) {
          page3_num = rs.getLong(1)
        }
      }
    })
    val nf = NumberFormat.getPercentInstance
    val page1ToPage2Rate = if (page1_num == 0) "0%" else nf.format(page2_num.toDouble / page1_num.toDouble)
    val page2ToPage3Rate = if (page2_num == 0) "0%" else nf.format(page3_num.toDouble / page2_num.toDouble)
    sqlProxy.executeUpdate(client, "update page_jump_rate set jump_rate=? where page_id=?", Array(page1ToPage2Rate, 2))
    sqlProxy.executeUpdate(client, "update page_jump_rate set jump_rate=? where page_id=?", Array(page2ToPage3Rate, 3))
  }

}

实时统计学员播放视频各时长

用户在线播放视频进行学习课程,后台记录视频播放开始区间和结束区间,及播放开始时间和播放结束时间,后台手机数据传输kafka需要计算用户播放视频总时长、有效时长、完成时长,及各维度总播放时长。

需求1:计算各章节下的播放总时长(按chapterid聚合统计播放总时长)

需求2:计算各课件下的播放总时长(按cwareid聚合统计播放总时长)

需求3:计算各辅导下的播放总时长(按edutypeid聚合统计播放总时长)

需求4:计算各播放平台下的播放总时长(按sourcetype聚合统计播放总时长)

需求5:计算各科目下的播放总时长(按subjectid聚合统计播放总时长)

需求6:计算用户学习视频的播放总时长、有效时长、完成时长,需求记录视频播历史区间,对于用户多次学习的播放区间不累计有效时长和完成时长。

播放总时长计算:(te-ts)/1000 向下取整 单位:秒

完成时长计算: 根据pe-ps 计算 需要对历史数据进行去重处理

有效时长计算:根据te-ts 除以pe-ts 先计算出播放每一区间需要的实际时长 * 完成时长

代码语言:javascript复制
import java.lang
import java.sql.{Connection, ResultSet}

import com.catelf.qzpoint.bean.LearnModel
import com.catelf.qzpoint.util.{DataSourceUtil, ParseJsonData, QueryCallback, SqlProxy}
import org.apache.kafka.clients.consumer.ConsumerRecord
import org.apache.kafka.common.TopicPartition
import org.apache.kafka.common.serialization.StringDeserializer
import org.apache.spark.SparkConf
import org.apache.spark.streaming.dstream.InputDStream
import org.apache.spark.streaming.kafka010._
import org.apache.spark.streaming.{Seconds, StreamingContext}

import scala.collection.mutable
import scala.collection.mutable.ArrayBuffer

object CourseLearnStreaming {
  private val groupid = "course_learn_test2"

  def main(args: Array[String]): Unit = {
    val conf = new SparkConf().setAppName(this.getClass.getSimpleName).setMaster("local[*]")
      .set("spark.streaming.kafka.maxRatePerPartition", "30")
      .set("spark.streaming.stopGracefullyOnShutdown", "true")

    val ssc = new StreamingContext(conf, Seconds(3))
    val topics = Array("course_learn")
    val kafkaMap: Map[String, Object] = Map[String, Object](
      "bootstrap.servers" -> "cdh1.macro.com:9092,cdh2.macro.com:9092,cdh3.macro.com:9092",
      "key.deserializer" -> classOf[StringDeserializer],
      "value.deserializer" -> classOf[StringDeserializer],
      "group.id" -> groupid,
      "auto.offset.reset" -> "earliest",
      "enable.auto.commit" -> (false: lang.Boolean)
    )
    //查询mysql是否存在偏移量
    val sqlProxy = new SqlProxy()
    val offsetMap = new mutable.HashMap[TopicPartition, Long]()
    val client = DataSourceUtil.getConnection
    try {
      sqlProxy.executeQuery(client, "select *from `offset_manager` where groupid=?", Array(groupid), new QueryCallback {
        override def process(rs: ResultSet): Unit = {
          while (rs.next()) {
            val model = new TopicPartition(rs.getString(2), rs.getInt(3))
            val offset = rs.getLong(4)
            offsetMap.put(model, offset)
          }
          rs.close()
        }
      })
    } catch {
      case e: Exception => e.printStackTrace()
    } finally {
      sqlProxy.shutdown(client)
    }
    //设置kafka消费数据的参数 判断本地是否有偏移量  有则根据偏移量继续消费 无则重新消费
    val stream: InputDStream[ConsumerRecord[String, String]] = if (offsetMap.isEmpty) {
      KafkaUtils.createDirectStream(
        ssc, LocationStrategies.PreferConsistent, ConsumerStrategies.Subscribe[String, String](topics, kafkaMap))
    } else {
      KafkaUtils.createDirectStream(
        ssc, LocationStrategies.PreferConsistent, ConsumerStrategies.Subscribe[String, String](topics, kafkaMap, offsetMap))
    }

    //解析json数据
    val dsStream = stream.mapPartitions(partitions => {
      partitions.map(item => {
        val json = item.value()
        val jsonObject = ParseJsonData.getJsonData(json)
        val userId = jsonObject.getIntValue("uid")
        val cwareId = jsonObject.getIntValue("cwareid")
        val videoId = jsonObject.getIntValue("videoid")
        val chapterId = jsonObject.getIntValue("chapterid")
        val edutypeId = jsonObject.getIntValue("edutypeid")
        val subjectId = jsonObject.getIntValue("subjectid")
        val sourceType = jsonObject.getString("sourceType")
        val speed = jsonObject.getIntValue("speed")
        val ts = jsonObject.getLong("ts")
        val te = jsonObject.getLong("te")
        val ps = jsonObject.getIntValue("ps")
        val pe = jsonObject.getIntValue("pe")
        LearnModel(userId, cwareId, videoId, chapterId, edutypeId, subjectId, sourceType, speed, ts, te, ps, pe)
      })
    })

    dsStream.foreachRDD(rdd => {
      rdd.cache()
      //统计播放视频 有效时长 完成时长 总时长
      rdd.groupBy(item => item.userId   "_"   item.cwareId   "_"   item.videoId).foreachPartition(partitoins => {
        val sqlProxy = new SqlProxy()
        val client = DataSourceUtil.getConnection
        try {
          partitoins.foreach { case (key, iters) =>
            calcVideoTime(key, iters, sqlProxy, client) //计算视频时长
          }
        } catch {
          case e: Exception => e.printStackTrace()
        } finally {
          sqlProxy.shutdown(client)
        }
      })
      //统计章节下视频播放总时长
      rdd.mapPartitions(partitions => {
        partitions.map(item => {
          val totaltime = Math.ceil((item.te - item.ts) / 1000).toLong
          val key = item.chapterId
          (key, totaltime)
        })
      }).reduceByKey(_   _)
        .foreachPartition(partitoins => {
          val sqlProxy = new SqlProxy()
          val client = DataSourceUtil.getConnection
          try {
            partitoins.foreach(item => {
              sqlProxy.executeUpdate(client, "insert into chapter_learn_detail(chapterid,totaltime) values(?,?) on duplicate key"  
                " update totaltime=totaltime ?", Array(item._1, item._2, item._2))
            })
          } catch {
            case e: Exception => e.printStackTrace()
          } finally {
            sqlProxy.shutdown(client)
          }
        })

      //统计课件下的总播放时长
      rdd.mapPartitions(partitions => {
        partitions.map(item => {
          val totaltime = Math.ceil((item.te - item.ts) / 1000).toLong
          val key = item.cwareId
          (key, totaltime)
        })
      }).reduceByKey(_   _).foreachPartition(partitions => {
        val sqlProxy = new SqlProxy()
        val client = DataSourceUtil.getConnection
        try {
          partitions.foreach(item => {
            sqlProxy.executeUpdate(client, "insert into cwareid_learn_detail(cwareid,totaltime) values(?,?) on duplicate key "  
              "update totaltime=totaltime ?", Array(item._1, item._2, item._2))
          })
        } catch {
          case e: Exception => e.printStackTrace()
        } finally {
          sqlProxy.shutdown(client)
        }
      })

      //统计辅导下的总播放时长
      rdd.mapPartitions(partitions => {
        partitions.map(item => {
          val totaltime = Math.ceil((item.te - item.ts) / 1000).toLong
          val key = item.edutypeId
          (key, totaltime)
        })
      }).reduceByKey(_   _).foreachPartition(partitions => {
        val sqlProxy = new SqlProxy()
        val client = DataSourceUtil.getConnection
        try {
          partitions.foreach(item => {
            sqlProxy.executeUpdate(client, "insert into edutype_learn_detail(edutypeid,totaltime) values(?,?) on duplicate key "  
              "update totaltime=totaltime ?", Array(item._1, item._2, item._2))
          })
        } catch {
          case e: Exception => e.printStackTrace()
        } finally {
          sqlProxy.shutdown(client)
        }
      })

      //统计同一资源平台下的总播放时长
      rdd.mapPartitions(partitions => {
        partitions.map(item => {
          val totaltime = Math.ceil((item.te - item.ts) / 1000).toLong
          val key = item.sourceType
          (key, totaltime)
        })
      }).reduceByKey(_   _).foreachPartition(partitions => {
        val sqlProxy = new SqlProxy()
        val client = DataSourceUtil.getConnection
        try {
          partitions.foreach(item => {
            sqlProxy.executeUpdate(client, "insert into sourcetype_learn_detail (sourcetype,totaltime) values(?,?) on duplicate key "  
              "update totaltime=totaltime ?", Array(item._1, item._2, item._2))
          })
        } catch {
          case e: Exception => e.printStackTrace()
        } finally {
          sqlProxy.shutdown(client)
        }
      })
      // 统计同一科目下的播放总时长
      rdd.mapPartitions(partitions => {
        partitions.map(item => {
          val totaltime = Math.ceil((item.te - item.ts) / 1000).toLong
          val key = item.subjectId
          (key, totaltime)
        })
      }).reduceByKey(_   _).foreachPartition(partitons => {
        val sqlProxy = new SqlProxy()
        val clinet = DataSourceUtil.getConnection
        try {
          partitons.foreach(item => {
            sqlProxy.executeUpdate(clinet, "insert into subject_learn_detail(subjectid,totaltime) values(?,?) on duplicate key "  
              "update totaltime=totaltime ?", Array(item._1, item._2, item._2))
          })
        } catch {
          case e: Exception => e.printStackTrace()
        } finally {
          sqlProxy.shutdown(clinet)
        }
      })

    })
    //计算转换率
    //处理完 业务逻辑后 手动提交offset维护到本地 mysql中
    stream.foreachRDD(rdd => {
      val sqlProxy = new SqlProxy()
      val client = DataSourceUtil.getConnection
      try {
        val offsetRanges: Array[OffsetRange] = rdd.asInstanceOf[HasOffsetRanges].offsetRanges
        for (or <- offsetRanges) {
          sqlProxy.executeUpdate(client, "replace into `offset_manager` (groupid,topic,`partition`,untilOffset) values(?,?,?,?)",
            Array(groupid, or.topic, or.partition.toString, or.untilOffset))
        }
      } catch {
        case e: Exception => e.printStackTrace()
      } finally {
        sqlProxy.shutdown(client)
      }
    })
    ssc.start()
    ssc.awaitTermination()
  }

  /**
   * 计算视频 有效时长  完成时长 总时长
   *
   * @param key
   * @param iters
   * @param sqlProxy
   * @param client
   */
  def calcVideoTime(key: String, iters: Iterable[LearnModel], sqlProxy: SqlProxy, client: Connection) = {
    val keys = key.split("_")
    val userId = keys(0).toInt
    val cwareId = keys(1).toInt
    val videoId = keys(2).toInt
    //查询历史数据
    var interval_history = ""
    sqlProxy.executeQuery(client, "select play_interval from video_interval where userid=? and cwareid=? and videoid=?",
      Array(userId, cwareId, videoId), new QueryCallback {
        override def process(rs: ResultSet): Unit = {
          while (rs.next()) {
            interval_history = rs.getString(1)
          }
          rs.close()
        }
      })
    var effective_duration_sum = 0l //有效总时长
    var complete_duration_sum = 0l //完成总时长
    var cumulative_duration_sum = 0l //播放总时长
    val learnList = iters.toList.sortBy(item => item.ps) //转成list 并根据开始区间升序排序
    learnList.foreach(item => {
      if ("".equals(interval_history)) {
        //没有历史区间
        val play_interval = item.ps   "-"   item.pe //有效区间
        val effective_duration = Math.ceil((item.te - item.ts) / 1000) //有效时长
        val complete_duration = item.pe - item.ps //完成时长
        effective_duration_sum  = effective_duration.toLong
        cumulative_duration_sum  = effective_duration.toLong
        complete_duration_sum  = complete_duration
        interval_history = play_interval
      } else {
        //有历史区间进行对比
        val interval_arry = interval_history.split(",").sortBy(a => (a.split("-")(0).toInt, a.split("-")(1).toInt))
        val tuple = getEffectiveInterval(interval_arry, item.ps, item.pe)
        val complete_duration = tuple._1 //获取实际有效完成时长
        val effective_duration = Math.ceil((item.te - item.ts) / 1000) / (item.pe - item.ps) * complete_duration //计算有效时长
        val cumulative_duration = Math.ceil((item.te - item.ts) / 1000) //累计时长
        interval_history = tuple._2
        effective_duration_sum  = effective_duration.toLong
        complete_duration_sum  = complete_duration
        cumulative_duration_sum  = cumulative_duration.toLong
      }
      sqlProxy.executeUpdate(client, "insert into video_interval(userid,cwareid,videoid,play_interval) values(?,?,?,?) "  
        "on duplicate key update play_interval=?", Array(userId, cwareId, videoId, interval_history, interval_history))
      sqlProxy.executeUpdate(client, "insert into video_learn_detail(userid,cwareid,videoid,totaltime,effecttime,completetime) "  
        "values(?,?,?,?,?,?) on duplicate key update totaltime=totaltime ?,effecttime=effecttime ?,completetime=completetime ?",
        Array(userId, cwareId, videoId, cumulative_duration_sum, effective_duration_sum, complete_duration_sum, cumulative_duration_sum,
          effective_duration_sum, complete_duration_sum))
    })
  }

  /**
   * 计算有效区间
   *
   * @param array
   * @param start
   * @param end
   * @return
   */
  def getEffectiveInterval(array: Array[String], start: Int, end: Int) = {
    var effective_duration = end - start
    var bl = false //是否对有效时间进行修改
    import scala.util.control.Breaks._
    breakable {
      for (i <- 0 until array.length) {
        //循环各区间段
        var historyStart = 0 //获取其中一段的开始播放区间
        var historyEnd = 0 //获取其中一段结束播放区间
        val item = array(i)
        try {
          historyStart = item.split("-")(0).toInt
          historyEnd = item.split("-")(1).toInt
        } catch {
          case e: Exception => throw new Exception("error array:"   array.mkString(","))
        }
        if (start >= historyStart && historyEnd >= end) {
          //已有数据占用全部播放时长 此次播放无效
          effective_duration = 0
          bl = true
          break()
        } else if (start <= historyStart && end > historyStart && end < historyEnd) {
          //和已有数据左侧存在交集 扣除部分有效时间(以老数据为主进行对照)
          effective_duration -= end - historyStart
          array(i) = start   "-"   historyEnd
          bl = true
        } else if (start > historyStart && start < historyEnd && end >= historyEnd) {
          //和已有数据右侧存在交集 扣除部分有效时间
          effective_duration -= historyEnd - start
          array(i) = historyStart   "-"   end
          bl = true
        } else if (start < historyStart && end > historyEnd) {
          //现数据 大于旧数据 扣除旧数据所有有效时间
          effective_duration -= historyEnd - historyStart
          array(i) = start   "-"   end
          bl = true
        }
      }
    }
    val result = bl match {
      case false => {
        //没有修改原array 没有交集 进行新增
        val distinctArray2 = ArrayBuffer[String]()
        distinctArray2.appendAll(array)
        distinctArray2.append(start   "-"   end)
        val distinctArray = distinctArray2.distinct.sortBy(a => (a.split("-")(0).toInt, a.split("-")(1).toInt))
        val tmpArray = ArrayBuffer[String]()
        tmpArray.append(distinctArray(0))
        for (i <- 1 until distinctArray.length) {
          val item = distinctArray(i).split("-")
          val tmpItem = tmpArray(tmpArray.length - 1).split("-")
          val itemStart = item(0)
          val itemEnd = item(1)
          val tmpItemStart = tmpItem(0)
          val tmpItemEnd = tmpItem(1)
          if (tmpItemStart.toInt < itemStart.toInt && tmpItemEnd.toInt < itemStart.toInt) {
            //没有交集
            tmpArray.append(itemStart   "-"   itemEnd)
          } else {
            //有交集
            val resultStart = tmpItemStart
            val resultEnd = if (tmpItemEnd.toInt > itemEnd.toInt) tmpItemEnd else itemEnd
            tmpArray(tmpArray.length - 1) = resultStart   "-"   resultEnd
          }
        }
        val play_interval = tmpArray.sortBy(a => (a.split("-")(0).toInt, a.split("-")(1).toInt)).mkString(",")
        play_interval
      }
      case true => {
        //修改了原array 进行区间重组
        val distinctArray = array.distinct.sortBy(a => (a.split("-")(0).toInt, a.split("-")(1).toInt))
        val tmpArray = ArrayBuffer[String]()
        tmpArray.append(distinctArray(0))
        for (i <- 1 until distinctArray.length) {
          val item = distinctArray(i).split("-")
          val tmpItem = tmpArray(tmpArray.length - 1).split("-")
          val itemStart = item(0)
          val itemEnd = item(1)
          val tmpItemStart = tmpItem(0)
          val tmpItemEnd = tmpItem(1)
          if (tmpItemStart.toInt < itemStart.toInt && tmpItemEnd.toInt < itemStart.toInt) {
            //没有交集
            tmpArray.append(itemStart   "-"   itemEnd)
          } else {
            //有交集
            val resultStart = tmpItemStart
            val resultEnd = if (tmpItemEnd.toInt > itemEnd.toInt) tmpItemEnd else itemEnd
            tmpArray(tmpArray.length - 1) = resultStart   "-"   resultEnd
          }
        }
        val play_interval = tmpArray.sortBy(a => (a.split("-")(0).toInt, a.split("-")(1).toInt)).mkString(",")
        play_interval
      }
    }
    (effective_duration, result)
  }
}

0 人点赞