Python机器学习库scikit-learn实践

2020-12-28 11:33:36 浏览数 (1)

参考链接: Scikit-learn中的模型构建:Python机器学习库

Python机器学习库scikit-learn实践

zouxy09@qq.com

http://blog.csdn.net/zouxy09

一、概述

       机器学习算法在近几年大数据点燃的热火熏陶下已经变得被人所“熟知”,就算不懂得其中各算法理论,叫你喊上一两个著名算法的名字,你也能昂首挺胸脱口而出。当然了,算法之林虽大,但能者还是有限,能适应某些环境并取得较好效果的算法会脱颖而出,而表现平平者则被历史所淡忘。随着机器学习社区的发展和实践验证,这群脱颖而出者也逐渐被人所认可和青睐,同时获得了更多社区力量的支持、改进和推广。

       以最广泛的分类算法为例,大致可以分为线性和非线性两大派别。线性算法有著名的逻辑回归、朴素贝叶斯、最大熵等,非线性算法有随机森林、决策树、神经网络、核机器等等。线性算法举的大旗是训练和预测的效率比较高,但最终效果对特征的依赖程度较高,需要数据在特征层面上是线性可分的。因此,使用线性算法需要在特征工程上下不少功夫,尽量对特征进行选择、变换或者组合等使得特征具有区分性。而非线性算法则牛逼点,可以建模复杂的分类面,从而能更好的拟合数据。

       那在我们选择了特征的基础上,哪个机器学习算法能取得更好的效果呢?谁也不知道。实践是检验哪个好的不二标准。那难道要苦逼到写五六个机器学习的代码吗?No,机器学习社区的力量是强大的,码农界的共识是不重复造轮子!因此,对某些较为成熟的算法,总有某些优秀的库可以直接使用,省去了大伙调研的大部分时间。

       基于目前使用python较多,而python界中远近闻名的机器学习库要数scikit-learn莫属了。这个库优点很多。简单易用,接口抽象得非常好,而且文档支持实在感人。本文中,我们可以封装其中的很多机器学习算法,然后进行一次性测试,从而便于分析取优。当然了,针对具体算法,超参调优也非常重要。

二、Scikit-learn的python实践

2.1、Python的准备工作

       Python一个备受欢迎的点是社区支持很多,有非常多优秀的库或者模块。但是某些库之间有时候也存在依赖,所以要安装这些库也是挺繁琐的过程。但总有人忍受不了这种繁琐,都会开发出不少自动化的工具来节省各位客官的时间。其中,个人总结,安装一个python的库有以下三种方法:

1)Anaconda

       这是一个非常齐全的python发行版本,最新的版本提供了多达195个流行的python包,包含了我们常用的numpy、scipy等等科学计算的包。有了它,妈妈再也不用担心我焦头烂额地安装一个又一个依赖包了。Anaconda在手,轻松我有!下载地址如下:http://www.continuum.io/downloads

2)Pip

       使用过Ubuntu的人,对apt-get的爱只有自己懂。其实对Python的库的下载和安装可以借助pip工具的。需要安装什么库,直接下载和安装一条龙服务。在pip官网https://pypi.python.org/pypi/pip下载安装即可。未来的需求就在#pip install xx 中。

3)源码包

       如果上述两种方法都没有找到你的库,那你直接把库的源码下载回来,解压,然后在目录中会有个setup.py文件。执行#python setup.py install 即可把这个库安装到python的默认库目录中。

2.2、Scikit-learn的测试

       scikit-learn已经包含在Anaconda中。也可以在官方下载源码包进行安装。本文代码里封装了如下机器学习算法,我们修改数据加载函数,即可一键测试:

classifiers = {'NB':naive_bayes_classifier, 

                  'KNN':knn_classifier,

                   'LR':logistic_regression_classifier,

                   'RF':random_forest_classifier,

                   'DT':decision_tree_classifier,

                  'SVM':svm_classifier,

                'SVMCV':svm_cross_validation,

                 'GBDT':gradient_boosting_classifier

    }

train_test.py

#!usr/bin/env python

#-*- coding: utf-8 -*-

import sys

import os

import time

from sklearn import metrics

import numpy as np

import cPickle as pickle

reload(sys)

sys.setdefaultencoding('utf8')

# Multinomial Naive Bayes Classifier

def naive_bayes_classifier(train_x, train_y):

    from sklearn.naive_bayes import MultinomialNB

    model = MultinomialNB(alpha=0.01)

    model.fit(train_x, train_y)

    return model

# KNN Classifier

def knn_classifier(train_x, train_y):

    from sklearn.neighbors import KNeighborsClassifier

    model = KNeighborsClassifier()

    model.fit(train_x, train_y)

    return model

# Logistic Regression Classifier

def logistic_regression_classifier(train_x, train_y):

    from sklearn.linear_model import LogisticRegression

    model = LogisticRegression(penalty='l2')

    model.fit(train_x, train_y)

    return model

# Random Forest Classifier

def random_forest_classifier(train_x, train_y):

    from sklearn.ensemble import RandomForestClassifier

    model = RandomForestClassifier(n_estimators=8)

    model.fit(train_x, train_y)

    return model

# Decision Tree Classifier

def decision_tree_classifier(train_x, train_y):

    from sklearn import tree

    model = tree.DecisionTreeClassifier()

    model.fit(train_x, train_y)

    return model

# GBDT(Gradient Boosting Decision Tree) Classifier

def gradient_boosting_classifier(train_x, train_y):

    from sklearn.ensemble import GradientBoostingClassifier

    model = GradientBoostingClassifier(n_estimators=200)

    model.fit(train_x, train_y)

    return model

# SVM Classifier

def svm_classifier(train_x, train_y):

    from sklearn.svm import SVC

    model = SVC(kernel='rbf', probability=True)

    model.fit(train_x, train_y)

    return model

# SVM Classifier using cross validation

def svm_cross_validation(train_x, train_y):

    from sklearn.grid_search import GridSearchCV

    from sklearn.svm import SVC

    model = SVC(kernel='rbf', probability=True)

    param_grid = {'C': [1e-3, 1e-2, 1e-1, 1, 10, 100, 1000], 'gamma': [0.001, 0.0001]}

    grid_search = GridSearchCV(model, param_grid, n_jobs = 1, verbose=1)

    grid_search.fit(train_x, train_y)

    best_parameters = grid_search.best_estimator_.get_params()

    for para, val in best_parameters.items():

        print para, val

    model = SVC(kernel='rbf', C=best_parameters['C'], gamma=best_parameters['gamma'], probability=True)

    model.fit(train_x, train_y)

    return model

def read_data(data_file):

    import gzip

    f = gzip.open(data_file, "rb")

    train, val, test = pickle.load(f)

    f.close()

    train_x = train[0]

    train_y = train[1]

    test_x = test[0]

    test_y = test[1]

    return train_x, train_y, test_x, test_y

if __name__ == '__main__':

    data_file = "mnist.pkl.gz"

    thresh = 0.5

    model_save_file = None

    model_save = {}

    test_classifiers = ['NB', 'KNN', 'LR', 'RF', 'DT', 'SVM', 'GBDT']

    classifiers = {'NB':naive_bayes_classifier, 

                  'KNN':knn_classifier,

                   'LR':logistic_regression_classifier,

                   'RF':random_forest_classifier,

                   'DT':decision_tree_classifier,

                  'SVM':svm_classifier,

                'SVMCV':svm_cross_validation,

                 'GBDT':gradient_boosting_classifier

    }

    print 'reading training and testing data...'

    train_x, train_y, test_x, test_y = read_data(data_file)

    num_train, num_feat = train_x.shape

    num_test, num_feat = test_x.shape

    is_binary_class = (len(np.unique(train_y)) == 2)

    print '******************** Data Info *********************'

    print '#training data: %d, #testing_data: %d, dimension: %d' % (num_train, num_test, num_feat)

    for classifier in test_classifiers:

        print '******************* %s ********************' % classifier

        start_time = time.time()

        model = classifiers[classifier](train_x, train_y)

        print 'training took %fs!' % (time.time() - start_time)

        predict = model.predict(test_x)

        if model_save_file != None:

            model_save[classifier] = model

        if is_binary_class:

            precision = metrics.precision_score(test_y, predict)

            recall = metrics.recall_score(test_y, predict)

            print 'precision: %.2f%%, recall: %.2f%%' % (100 * precision, 100 * recall)

        accuracy = metrics.accuracy_score(test_y, predict)

        print 'accuracy: %.2f%%' % (100 * accuracy) 

    if model_save_file != None:

        pickle.dump(model_save, open(model_save_file, 'wb'))

四、测试结果

       本次使用mnist手写体库进行实验:http://deeplearning.net/data/mnist/mnist.pkl.gz。共5万训练样本和1万测试样本。

       代码运行结果如下:

reading training and testing data...

******************** Data Info *********************

#training data: 50000, #testing_data: 10000, dimension: 784

******************* NB ********************

training took 0.287000s!

accuracy: 83.69%

******************* KNN ********************

training took 31.991000s!

accuracy: 96.64%

******************* LR ********************

training took 101.282000s!

accuracy: 91.99%

******************* RF ********************

training took 5.442000s!

accuracy: 93.78%

******************* DT ********************

training took 28.326000s!

accuracy: 87.23%

******************* SVM ********************

training took 3152.369000s!

accuracy: 94.35%

******************* GBDT ********************

training took 7623.761000s!

accuracy: 96.18%

       在这个数据集中,由于数据分布的团簇性较好(如果对这个数据库了解的话,看它的t-SNE映射图就可以看出来。由于任务简单,其在deep learning界已被认为是toy dataset),因此KNN的效果不赖。GBDT是个非常不错的算法,在kaggle等大数据比赛中,状元探花榜眼之列经常能见其身影。三个臭皮匠赛过诸葛亮,还是被验证有道理的,特别是三个臭皮匠还能力互补的时候!

       还有一个在实际中非常有效的方法,就是融合这些分类器,再进行决策。例如简单的投票,效果都非常不错。建议在实践中,大家都可以尝试下。

0 人点赞